Prove it! Properties of logarithms

  Рет қаралды 24,182

Dr Peyam

Dr Peyam

Күн бұрын

Пікірлер: 87
@leickrobinson5186
@leickrobinson5186 3 жыл бұрын
I love when he gives himself a clean edit point, but then later goes “Hmm... Edit it? Nah... Let ‘em see it all!“ 😂😂
@H0tinNYC
@H0tinNYC 3 жыл бұрын
Yes, I love how genuine he is.
@drpeyam
@drpeyam 3 жыл бұрын
Omg I forgot to cut it out lol
@leickrobinson5186
@leickrobinson5186 3 жыл бұрын
@@drpeyam 😂😂😂
@oscaroblivion6570
@oscaroblivion6570 3 жыл бұрын
I'm new to this great site and so I was scratching my head; "What's a Chen-Lu?" Going back 3 years I find Dr. Peyam's video on the Chen-Lu. Fell out of my chair laughing: It's the chain rule.
@dr.rahulgupta7573
@dr.rahulgupta7573 3 жыл бұрын
Simple identity but simpler presentation wow ! DrRahul Rohtak Haryana India
@tgx3529
@tgx3529 3 жыл бұрын
When I was a small child, we learned at school, that the definition ln x is, that this function is inverse to a^x function. But I heard that this function ln x existed a lot of years before a^x function. At the University we learnet any definition. We learnet this(it's from my notes): Lemma: Exists only one function on interval (0;infinity) with propertis f(x*y)=f(x)+f(y) and lim f(x)/(x-1) =1 where x go to 1. This function is named logaritmic function.It's continues, growing on (0;infinity) , ,Hf=R, and applies to it rule (ln x)'=1/x , x>0. Is only this integral from 1 /t where t in interval (1;x), x>0 the definition ln x in USA??
@Noname-67
@Noname-67 3 жыл бұрын
It's not the definition, it's the property of ln x
@semperciok
@semperciok 3 жыл бұрын
you can define it whatever you like, you will always get same results
@Noname-67
@Noname-67 3 жыл бұрын
@1412 I was talking about the integral in the video
@Noname-67
@Noname-67 3 жыл бұрын
@1412 before that
@elfabri666
@elfabri666 3 жыл бұрын
I had such a long complicated proof for ln(x^r), yours is great, thanks!
@Magictrend101
@Magictrend101 Жыл бұрын
I have the shortest in my channel
@marienbad2
@marienbad2 3 жыл бұрын
It has been so long since I did maths that I have forgotten most of it, so understanding this stuff is beyond me now, but I love watching because of the joyful and interesting presentation! So nice to see someone with a love for maths explain it like this, with a smile on their face!
@aitijhyasaha2569
@aitijhyasaha2569 3 жыл бұрын
Sir, really you're a genius. It was awesome. This type of video makes the concept of mathematics more clear and strong too. Love and regards...
@jamesbentonticer4706
@jamesbentonticer4706 3 жыл бұрын
He's speaks like 4 languages too. Your right genius fits to describe him.
@michaelempeigne3519
@michaelempeigne3519 3 жыл бұрын
this definition says that 223 / 71 < pi < 22 / 7 . The circumference of any circle is greater than three times the diameter and exceeds it by a quantity less than the seventh part of the diameter but greater than ten seventy-first parts.
@michaelempeigne3519
@michaelempeigne3519 3 жыл бұрын
NOte : it was translated from ancient greek writing.
@speedsterh
@speedsterh 3 жыл бұрын
Thanks for reminding those proofs from high school ! I enjoyed these very much
@studentstudy162
@studentstudy162 3 жыл бұрын
Dr Peyam uses integrals Le Me: writes Ln(x) = a or x= e^a Similarly Ln(y)=b or y=e^b xy=e^a * e^b = e^(a+b) Taking Ln both sides Ln(xy) = Ln(e^(a+b))= a+b = Ln(x) + Ln(y)
@MA-bm9jz
@MA-bm9jz 3 жыл бұрын
You can also prove it via homorphisms,if f is a homorphism so is f^(-1)
@jamesbentonticer4706
@jamesbentonticer4706 3 жыл бұрын
Editing like that assures zero discontinuity errors. Brilliant.
@Emre-tt2ft
@Emre-tt2ft 3 жыл бұрын
"dos equis", clase de matemáticas con un poco de español, me encanta!!!
@ahmedgaafar5369
@ahmedgaafar5369 3 жыл бұрын
I really like his brilliant derivation steps.
@lucakoch3432
@lucakoch3432 3 жыл бұрын
Hey Dr.Peyam, I always wondered how you would prove the thing you mention at 6:24 and so I would really love to see a follow up video showing how it’s done, or maybe you can just give me some hints so I can try it on my own, that would be really cool 😁👌
@bobochdbrew-j4k
@bobochdbrew-j4k 3 жыл бұрын
1:00 i think should be ln’(x) not (ln(x))’ because ln is a function and ln(x) is a number so its derivative should be 0
@drpeyam
@drpeyam 3 жыл бұрын
Same thing
@dianeweiss4562
@dianeweiss4562 3 жыл бұрын
As a Freshman at UCLA, we used Apostle’s Calculus textbook that also started with the definition of the natural logarithm as you stated. Unfortunately, my class was an “honors” section and I while I could solve the problems, I couldn’t follow the proofs. It wasn’t until half a century later that by watching your videos that I could piece together the proofs.
@tsunningwah3471
@tsunningwah3471 3 жыл бұрын
Hi Dr Peyam!! Love from Hong Kong. May I ask a question ? Normally if you differentiate lnx, you have to deal with (ln(x+h)-lnx)/h, which hasn't been proven yet. Isn't that kind of circular?
@MichaelRothwell1
@MichaelRothwell1 3 жыл бұрын
Very neat! Another way to prove (2) is ln(x)=ln(x/y*y)=ln(x/y)+ln(y).
@gobberman09
@gobberman09 3 жыл бұрын
5:41 And last but not least for the power law... *Cosmo's RE-DO!* And last but not least for the power law...
@aurangzeb5735
@aurangzeb5735 3 жыл бұрын
Sir I have a challenging question for you! if y=2r+s and x=3r-s then find derivative of y with respect to x?
@ajiwibowo8736
@ajiwibowo8736 3 жыл бұрын
I want to ask, why we use f(1)=f(x), and why other number doesnt work f(2) or f(3)
@medsaifeddinekamoun2921
@medsaifeddinekamoun2921 3 жыл бұрын
They should all technically work, but f(1) is clearly the easiest.
@PackSciences
@PackSciences 3 жыл бұрын
I remember these questions from a few years back. Unfortunately the teacher forgot to remind us which definition to use in the questions of the test. We had remembered that exp(x) was defined as the continuous function such that exp(0)=1 and exp(x+y)=exp(x)exp(y); and defined ln(x) as the reciprocal. In the end, many students, me included, answered "hey it's easy, just take the inverse function on both sides and you are done", which seemed oddly easy compared to the difficulty of other questions. I think I did 2) in a similar way but got stuck in 3) because I thought it was for reals and was a bit stuck and I think I didn't answer but the question was probably for integers only and didn't think of calculating the derivative.
@chaparral82
@chaparral82 3 жыл бұрын
Very complicated proof. It follows just because it is the reverse function of exp(x) where exp(x+y)=exp(x)*exp(y). So exp is a group isomorphism from (R,+) to (R+,*) and ln is the backwards group isomorphism from (R+,*) to (R,+)
@drpeyam
@drpeyam 3 жыл бұрын
No but this assumes you know that exp(x+y) = exp(x) exp(y)
@chaparral82
@chaparral82 3 жыл бұрын
@@drpeyam we knew exp(x) first ;-)
@camilocastrojimenez8612
@camilocastrojimenez8612 3 жыл бұрын
Genial dos x, saludo desde Colombia.
@rafaelpinheiro857
@rafaelpinheiro857 3 жыл бұрын
I know a general way to prove that log_a (MN)= log_a M+ log_a N. Let log_a M=x and log_a N=y. Therefore, M=a^x and N=a^y. Replacing these terms: log_a (MN)=log_a [(a^x)*(a^y) ]= log_a [a^(x+y)] = x+y= log_a M+ log_a N
@nathanisbored
@nathanisbored 3 жыл бұрын
i believe 'early transcendentals' textbooks would use a different definition of ln(x), since i think 'early transcendentals' just means that things like e^x and ln(x) are introduced pre-calculus, so you wouldnt be able to define it in terms of an integral. however, i think late transcendentals is more historically accurate, because lnx was originally defined as an integral and e^x was discovered later as its inverse. kinda interesting.
@FlyingOctopus0
@FlyingOctopus0 3 жыл бұрын
The last example made me think what if we fix the x and treat r as variable. Sadly, it doesn't help, because derivative (d/dr)x^r is not simple and uses ln, so it's probably circular reasoning. However it works the other way, if you know that ln(x^r)=r*ln(x) then you can differentiate both size by r and solve for (d/dr)x^r.
@PackSciences
@PackSciences 3 жыл бұрын
There is something more fundamental, it's that even if you prove f is constant depending on r, you don't prove that it is constant on x, so you would end up with f(x,r)=K(x), so you always need to differentiate with respect to x.
@AbouTaim-Lille
@AbouTaim-Lille 3 жыл бұрын
Put Ln XY = A , Ln X + Ln Y = B . first of all f(t) = exp t is a continuous strictly increasing function over IR, in particular it is Injective so f(x) = f(y) implies x=y . so taking exponential of each side we have : Exp A = exp (ln XY) = XY since exp is the reverse function of exp for XY >0. And Exp B = exp (lnX + lnY) = exp ln X . exp ln Y = X.Y. so Exp A = exp B. Again . since Exp is injective we have A=B #
@SeeTv.
@SeeTv. 3 жыл бұрын
I think you forgot to cut some things out, but still nice prove!
@plugandsocket500
@plugandsocket500 3 жыл бұрын
Very elegant
@aliasgharheidaritabar9128
@aliasgharheidaritabar9128 3 жыл бұрын
Bravo doc.it was wonderful
@guill3978
@guill3978 3 жыл бұрын
Is (ln 2)*(ln 3) a transcendental number? And what about ln(1+e) and ((ln ln 2)^2)*(ln 2)?
@pritivarshney2128
@pritivarshney2128 3 жыл бұрын
Amazing!
@babajani3569
@babajani3569 3 жыл бұрын
Hi love ur vids, I had a request. Could you plz make some videos on the STEP Exam. It is the Cambridge entrance exam for High School students and the questions in it are absolutely brutal. There are 3 papers in total and they increase in difficulty from STEP 1 being the easiest and STEP 3 is the hardest. I think you will really enjoy some of the questions since in my opinion, having looked at both the JEE advance maths questions and STEP 3, I would say that STEP 3 is actually even harder than Jee so plz give it a go. But if you want the really hard ones then do STEP 3. STEP 2 AND 1 are still hard but not as hard. Also, if you want the hardest ones, even from STEP 3, then there is a mark scheme which has all the answers of the questions from the past years and towards the end of that, you can go to STEP 3 and they tell you which questions were done well or poorly. Hence which were hardest and which were easiest.
@dougr.2398
@dougr.2398 3 жыл бұрын
Ellen of Why has a friend in a nearby town of Ecks called Ellen of Ecks
@sadface7457
@sadface7457 3 жыл бұрын
I like as mathematician. Someone can ask you to prove it and you actually can.
@adityamanohar2564
@adityamanohar2564 3 жыл бұрын
Best maths teacher ✌️😊
@miguelcerna7406
@miguelcerna7406 3 жыл бұрын
Excellent video but 2:59 I'm having trouble understanding how it is true for all x.
@drpeyam
@drpeyam 3 жыл бұрын
If f’(x) = 0 then f is constant (by the mean value theorem), and if it is constants, its value is the same everywhere, so it’s equal to the value at 1
@HichamBOUKHABZA13
@HichamBOUKHABZA13 3 жыл бұрын
Please keep proving stuff like that I'd like you prove in the next video This: exp(x+y) = exp(x) × exp(y)
@drpeyam
@drpeyam 3 жыл бұрын
I’ve done that already
@HichamBOUKHABZA13
@HichamBOUKHABZA13 3 жыл бұрын
@@drpeyam ok thanks
@nilsastrup8907
@nilsastrup8907 3 жыл бұрын
Cool way to define lnx, but I dont think it is that much of a natural way to define it, because you would have to know that the derivative of lnx is equal to 1/x, and to find that out you must use these famous log rules. Therefore I think the arguments are sircular.
@karimkadry
@karimkadry 3 жыл бұрын
Dr Peyam, you explain a very good topics but sometimes you use abbreviations that they are not understood. In general, thank you very much
@deedewald1707
@deedewald1707 3 жыл бұрын
A slide 📏 ruler proves the rule using hardware in hardware !
@dougr.2398
@dougr.2398 3 жыл бұрын
Ln(1/y) = ln [(y)^-1] = - ln (y). Do you know someone named Ellen who lives at Why? If not, why (!) Are you always talking about Ellen of Why? ;)
@rubus92202
@rubus92202 3 жыл бұрын
More proofs please :)
@TrandusNinja
@TrandusNinja 3 жыл бұрын
Today I had a dream where Dr Peyam did a collab with pewdiepie
@Gameboygenius
@Gameboygenius 3 жыл бұрын
In the collab they would explore the properties of ⌊x⌋
@Kdd160
@Kdd160 3 жыл бұрын
Nice!
@j_tinoco
@j_tinoco 3 жыл бұрын
¡Genial!
@richardfredlund3802
@richardfredlund3802 3 жыл бұрын
very nice
@hsjkdsgd
@hsjkdsgd 3 жыл бұрын
Chen Lu, Prada Lu😀
@moshebr-c9q
@moshebr-c9q 3 жыл бұрын
Math is pure philosophy with many branches to be explored.😜
@KingGisInDaHouse
@KingGisInDaHouse 3 жыл бұрын
Just raise e to both sides...
@willnewman9783
@willnewman9783 3 жыл бұрын
But then you have to define what e^x is. From what I have seen, it is more common in an introductory real analysis class to define ln first, and define e^x as the inverse.
@nournote
@nournote 3 жыл бұрын
I appreciate the mathematical rigour, starting by a definition. Not like the bprp strategy.
@MustafaBirsoz
@MustafaBirsoz 3 жыл бұрын
I love you bro
@monikaherath7505
@monikaherath7505 3 жыл бұрын
Is it me or has Dr Peyam looked really handsome lately? Haha
@Ocklepod
@Ocklepod 3 жыл бұрын
couldn't you just write x= e^k, y=e^l => ln(x)+ln(y)=k+l=ln(e^(k+l))=ln(e^k*e^l)=ln(xy) i didn't like using integral defintions for something that pops up out of the property that it is the inverse to exponential functions.
@Noname-67
@Noname-67 3 жыл бұрын
I have a much simpler proof and for any base, not just base e Let just called the base a log xy= log x+log y a^log xy= a^(log x+log y) xy= a^log x × a^log y xy=xy
@mhmdsalhab8254
@mhmdsalhab8254 3 жыл бұрын
👍
@deedewald1707
@deedewald1707 3 жыл бұрын
Us lefties need to be creative long ago !
@dr.rahulgupta7573
@dr.rahulgupta7573 3 жыл бұрын
Dr 3.14159........m.Thanks a log . for nice presentation. DrRahul Rohtak Haryana India
@drpeyam
@drpeyam 3 жыл бұрын
LOL
@mattetor6726
@mattetor6726 3 жыл бұрын
d/dx (Ellen) :D
@alaechoulli6111
@alaechoulli6111 3 жыл бұрын
Ln ewwwww 🤢 it’s ln
@tgx3529
@tgx3529 3 жыл бұрын
Ln is more univerzal then ln, if you meen Log z
@tamingphysics
@tamingphysics 3 жыл бұрын
👍
Hopital Counterexample
12:09
Dr Peyam
Рет қаралды 14 М.
But I AM joking, Mr. Feynman!
13:37
Dr Peyam
Рет қаралды 114 М.
Mom Hack for Cooking Solo with a Little One! 🍳👶
00:15
5-Minute Crafts HOUSE
Рет қаралды 23 МЛН
Каха и дочка
00:28
К-Media
Рет қаралды 3,4 МЛН
A very interesting differential equation.
16:28
Michael Penn
Рет қаралды 959 М.
Where does “e” come from?
14:45
Ali the Dazzling
Рет қаралды 58 М.
2024's Biggest Breakthroughs in Math
15:13
Quanta Magazine
Рет қаралды 486 М.
Integrate x^-x dx
20:37
Prime Newtons
Рет қаралды 130 М.
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 759 М.
All possible pythagorean triples, visualized
16:58
3Blue1Brown
Рет қаралды 3,9 МЛН