Superb Explanation.pls send more real time scenarios.its really helpful.Thank you so much
@gajulapatinagasai45633 күн бұрын
df= spark.read.option('skipRows',3).csv('path' , inferSchema= True , header= True) df.display() We can follow this method as well, it also works fine.
@sravankumar17672 жыл бұрын
Superb explanation bro 👌 👏 👍
@sssaamm299882 жыл бұрын
Very informative video.
@rutulhatwar51452 жыл бұрын
After writing zipwithIndex I am getting an error that file cant be found
@levialberto43792 жыл бұрын
Incredible. Thank you.
@Thulasisingala Жыл бұрын
why we have used skipline (final_rdd.first())attribute ,any way columns(collect()[0] attribute also having first row. we can directly use columns in lamda function
@userbayya2 жыл бұрын
excellent
@ruinmaster5039 Жыл бұрын
How to skip last 10 rows while reading csv in pyspark? pls help
@starmscloud Жыл бұрын
Skip Last N rows . Let's say , your data looks like this and you want to skip last "8" records . id,name,location 1,ravi,bangalore 2,raj,gurgaon 3,prasad,hyderabad 4,sekhar,bangalore line1 line2 line3 line4 line5 line6,col1,clo2,clo3,clo4,col5,clo6,clo7 line7,col1,clo2,clo3,clo4,col5,clo6,clo7 line8,col1,clo2,clo3,clo4,col5,clo6,clo7 # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # Solution : # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # Create a File in dbfs location : dbutils.fs.put("dbfs:/FileStore/Scenarios/3_skip_last_few_rows/lastfewrows.csv","""id,name,location 1,ravi,bangalore 2,raj,gurgaon 3,prasad,hyderabad 4,sekhar,bangalore line1 line2 line3 line4 line5 line6,col1,clo2,clo3,clo4,col5,clo6,clo7 line7,col1,clo2,clo3,clo4,col5,clo6,clo7 line8,col1,clo2,clo3,clo4,col5,clo6,clo7""",True) # using RDD : # ++++++++++++++++++ # Read the File into RDD rddRaw = sc.textFile("dbfs:/FileStore/Scenarios/3_skip_last_few_rows/lastfewrows.csv") # Get the RDD Count to get no of lines recordCount = rddRaw.count() #Specify how many lines you want to skip from end . in our case it's 8 . lastNoofRowstoFilter = 8 # Create a RDD to filter the specified no of rows. finalRDD = rddRaw.zipWithIndex().map(lambda row : ((row[0]),row[1]+1)).filter(lambda row : row[1] + lastNoofRowstoFilter 1).map(lambda row:tuple(str(row[0]).split(","))).toDF(headerRowList) # Diplay the Dataframe df.display()
@VikramReddyAnapana2 жыл бұрын
wonderful
@TRRaveendra2 жыл бұрын
Thank you 👍
@svcc7773 Жыл бұрын
Can't we delete those 4 lines from Unix box and reprocess the file instead of the code change, usually code cannot be modified for this kind of issues
@prabhakarsingh84442 жыл бұрын
Great Explanation...It was very helpful.... I am stuck with one question, like I am unable to convert the RDD to DF Below is the data of Contact.csv file: id,name,address 101,Abhay,"Delhi,Banglore" 102,Nishant,"Delhi , Ranchi" 103,Abhishek,Delhi In the first row, address column is having delimiter comma "," , so records are getting split. In the second row, address column have two new line character after Delhi, so again records are getting split. Due to the above problem unable to convert RDD to DF: getting below exception: java.lang.IllegalStateException: Input row doesn't have expected number of values required by the schema. 3 fields are required while 1 values are provided.
@TRRaveendra2 жыл бұрын
create df = spark.read.text(). and use option("multiline","true")
@BHARATHKUMARS-mr5jc2 жыл бұрын
this is working for normal files. but my csv file is encoded with utf-16. when I mentioned sc.textFile(path,use_unicode='utf-16') still not working. Can you help me with this.
@TRRaveendra2 жыл бұрын
Ping me error message or data file to Pysparktelugu@gmail.com
@meghanadhage8242 жыл бұрын
I have a multiple csv files whose header starting position is varying w.r.t every file so to skip those unwanted rows dynamically. Eg. 1. file1.csv:- Header is starting from 3rd row 2. File2.csv :- header is starting from 7th row So every time header starting position is not constant. So how to skip rows for these kind of files
@TRRaveendra2 жыл бұрын
read as text file and filter header based on data. then split into individual columns
@meghanadhage8242 жыл бұрын
Header count is also varying for each file as 3 or 4 or 5 etc. but we have first header as a date header for all the files. So that basis can you plz suggest how to filters the files as I am new to this pyspark
@TRRaveendra2 жыл бұрын
Then you should treat difference structure and different source. Create separate dataframes and then union or union all all dataframes. Then load into single table.
@chetanambi Жыл бұрын
We can also try this method: from pyspark.sql.functions import * df.withColumn('index', monotonically_increasing_id()) \ .filter('index > 2') \ .drop('index') \ .show(5)
@ruinmaster5039 Жыл бұрын
What if we want to skip last 10 rows while importing CSV
@DanishAnsari-hw7so Жыл бұрын
@@ruinmaster5039filter(max(index) - 10)) maybe
@starmscloud Жыл бұрын
@@ruinmaster5039 Skip Last N rows . Let's say , your data looks like this and you want to skip last "8" records . id,name,location 1,ravi,bangalore 2,raj,gurgaon 3,prasad,hyderabad 4,sekhar,bangalore line1 line2 line3 line4 line5 line6,col1,clo2,clo3,clo4,col5,clo6,clo7 line7,col1,clo2,clo3,clo4,col5,clo6,clo7 line8,col1,clo2,clo3,clo4,col5,clo6,clo7 # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # Solution : # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # Create a File in dbfs location : dbutils.fs.put("dbfs:/FileStore/Scenarios/3_skip_last_few_rows/lastfewrows.csv","""id,name,location 1,ravi,bangalore 2,raj,gurgaon 3,prasad,hyderabad 4,sekhar,bangalore line1 line2 line3 line4 line5 line6,col1,clo2,clo3,clo4,col5,clo6,clo7 line7,col1,clo2,clo3,clo4,col5,clo6,clo7 line8,col1,clo2,clo3,clo4,col5,clo6,clo7""",True) # using RDD : # ++++++++++++++++++ # Read the File into RDD rddRaw = sc.textFile("dbfs:/FileStore/Scenarios/3_skip_last_few_rows/lastfewrows.csv") # Get the RDD Count to get no of lines recordCount = rddRaw.count() #Specify how many lines you want to skip from end . in our case it's 8 . lastNoofRowstoFilter = 8 # Create a RDD to filter the specified no of rows. finalRDD = rddRaw.zipWithIndex().map(lambda row : ((row[0]),row[1]+1)).filter(lambda row : row[1] + lastNoofRowstoFilter 1).map(lambda row:tuple(str(row[0]).split(","))).toDF(headerRowList) # Diplay the Dataframe df.display()
@ranjansrivastava9256 Жыл бұрын
Hi Friend really a very good explanation. One suggestion can we use 'skiprows' properties instead of doing so many code. Please correct me.
@TRRaveendra Жыл бұрын
i think skiprows is available only on pandas. this examples are spark dataframe .
@Rafian1924 Жыл бұрын
@@TRRaveendra sometimes, I feel pandas is rich in functionality than pyspark
@jasonbernard51262 жыл бұрын
Nice Explanation. 2 questions. It appears that the file contents is loaded into memory...how to handle if the file is very large? Would window function be a better approach? Also, you are doing a simple split, what if the content uses quoting (1,"Smith, John", "somewhere, TX"). how would the approach change?
@TRRaveendra2 жыл бұрын
Spark internal architecture is distributed processing on multiple nodes. Its devides data into multiple blocks and those will be processed on data nodes based Cores availability.
@bharathr80782 жыл бұрын
did you get an answer to your 2nd question?
@jasonbernard51262 жыл бұрын
@@bharathr8078 No..but what I did is first get the header line in an rdd(rdd_header_line). then I use spark.read.csv (header_df=spark.read.csv(path=rdd_header_line,sep=',',quote='"') to get the header names into a spark dataframe. I then grab the column names from the data frame (column_names=[str(col_name) for col_name in header_df.collect()[0]])
@agamm212 жыл бұрын
How to make it work with text data file instead of csv? because I tried it and gave me all columns as one one column.
@TRRaveendra2 жыл бұрын
First read spark.read.text Then use split function
@fansouzafrei2 жыл бұрын
Great solution! By the way, can we use the pyspark API to skip this records or we can only use RDD? Congratulations!
@TRRaveendra2 жыл бұрын
Yes possible in Dataframe. But need to read without header and use window function row_number()
@raviyadav-dt1tb8 ай бұрын
We can skip it very simple way but you make it very lengthy
@SaikotRoy Жыл бұрын
This can be the alternative solution: Data set: +-----------+ | value| +-----------+ | line1 | | line2 | | line3 | |id,name,sal| | 1,abc,1000| | 2,cde,1000| | 3,xyz,500 | +-----------+ Solution: ------------------------------------------------ q4_df = spark.read.text("/content/drive/sample.txt") q4_df.show() df1 = q4_df.withColumn("index",monotonically_increasing_id()) df1.show() df2 = df1.filter(df1.index >3).drop("index").withColumn("splitted",split("value",",")) df2.show() for i in range(df2.select(max(size(df2.splitted))).collect()[0][0]): df2 = df2.withColumn("col"+str(i),df2.splitted[i]) df2.drop("value","splitted").toDF("EMPID","EMPNAME","SALARY").show()
@tamizh200310 ай бұрын
Great, Thanks, I tried another one too, that too working fine val schema2 = new StructType() .add("id", IntegerType) .add("name", StringType) .add("gender", StringType) .add("baddata", StringType) val df = spark.read.format("csv").schema(schema2).option("columnNameofCorruptRecord","baddata").option("header","true").load("file:///c:/data/file1.txt") df.show() val fil_df = df.filter("id is not null").drop("baddata") fil_df.show()