Pythonで時系列データの未来予測をしてみよう〜SARIMAなど〜【時系列分析#3】

  Рет қаралды 17,286

データサイエンス塾!!

データサイエンス塾!!

Күн бұрын

Пікірлер: 22
@nishimaki
@nishimaki 3 жыл бұрын
本動画で使用しているソースとファイルのダウンロードは下記URLからどうぞ。 analysis-navi.com/?p=3868
@mahala7861
@mahala7861 3 жыл бұрын
第三弾待ってました!ありがとうございました。 時系列データシリーズ1,2とも楽しく拝見させていただいておりましたが いい意味で、抜け感があって、それでいて実践的で。楽しく学習できてます。これからもよろしくお願いします。
@nishimaki
@nishimaki 3 жыл бұрын
大変嬉しいコメントありがとうございます! これからも頑張りますので、こちらこそ今後ともよろしくお願いします!!
@Super23vic
@Super23vic 3 жыл бұрын
いつも拝見しております。第1弾から3弾まで大変お疲れ様でした。このシリーズ以外の動画も含め、実務に役立つ非常に有益な動画だと思います。ほんとうにいつもありがとうございます!
@nishimaki
@nishimaki 3 жыл бұрын
こちらこそ大変嬉しいコメントありがとうございます! 今後ともよろしくお願いいたします!!
@osamuarima1118
@osamuarima1118 Жыл бұрын
面白いね、SARIMAXでXを日経平均として株価予測をやってみたいと思います。
@lotoyamaguchichannnel3335
@lotoyamaguchichannnel3335 2 жыл бұрын
シンプルで分かりやすくて助かります!
@nishimaki
@nishimaki 2 жыл бұрын
ありがとうございます!
@sokielevel1
@sokielevel1 2 жыл бұрын
とても勉強になりました。ありがとうございます。今回は簡単なデータでしたが、データによっては予測モデルを使うために予めローデータに何らかの下処理が必要なケースってあるんでしょうか。教えて頂けると幸いです。
@nishimaki
@nishimaki 2 жыл бұрын
ご視聴ありがとうざいます。 はい、むしろ下処理が不要な事の方が珍しいくらいかなと思います。 例えば、欠損値があったら前後の値に合わせて穴埋めを行ったり、あまりにも突飛な値が入っていた際にはデータの異常を疑ってその値を一定の値まで丸めたりなど、データや目的によって様々な下処理を施す事になります。
@歩夢大前
@歩夢大前 3 жыл бұрын
非常に勉強になりました。ありがとうございます! 実際に私もやってみようと思ったのですが、現在のstatsmodelsのバージョンだと statsmodels.tsa.arima.model.ARIMAが削除されており、別の方法で実装する必要がありそうなのですが、もしよろしければ新バージョンでの解説もしていただければとてもありがたいです。 宜しくお願いいたします。
@nishimaki
@nishimaki 3 жыл бұрын
ご視聴ありがとうございます!本動画は statsmodels.tsa.arima.model.ARIMA は使用しておらず、 statsmodels.tsa.statespace.sarimax.SARIMAX を使用してARIMAモデルを実装しております。 つまり、新バージョンによる解説になっているかなと思うのですがいかがでしょうか? 15:33〜 あたりです。
@歩夢大前
@歩夢大前 3 жыл бұрын
@@nishimaki ご返答ありがとうございます! 私が見落としておりました。最新版を利用しておられるのですね!私の勘違いでした。 これからも参考にさせていただきますので動画、楽しみにしております!
@F20Tigershark2007
@F20Tigershark2007 Жыл бұрын
大変わかりやすかったです。ありがとうございました。SARIMAXのモデルでは未来の予測はできないのでしょうか?
@nishimaki
@nishimaki Жыл бұрын
こちらこそありがとうございました! 予測期間のXに当たる部分のデータがございましたらSARIMAXでも予測は可能となります。
@taroukanesawa4406
@taroukanesawa4406 Жыл бұрын
株価のトレンド予測に使いたい その方法を解説願います
@nishimaki
@nishimaki Жыл бұрын
株価予測は大変良いテーマですね。 インプットのデータさえ用意すれば本動画の方法で実行できると思いますので、ぜひお試しください!
@wawassa4295
@wawassa4295 2 жыл бұрын
現在このstatsmodels==0.8.0を導入するにはpython3.6までだと思いますが、同様の環境を作成するymlファイルをご用意いただけますでしょうか?requirements.txtでも問題ありません。 ARMA単体のモデルが最新のstatsmodelsが削除されていくらか仕様が変わっているようでして環境の作成しづらくなっています。pandasのバージョンとの互換性もはまるポイントがあって苦戦しておりますので、 同様の環境で再現させていただきたいです。
@nishimaki
@nishimaki 2 жыл бұрын
私が実行を確認した際はPython3.7を使用しました。 requirements.txtは行数が多くコメント欄に貼れないため、抜粋してお伝えします。 statsmodels==0.10.1 pandas==1.3.2
@wawassa4295
@wawassa4295 2 жыл бұрын
ありがとうございます!再現できました
Pythonで時系列分析してみよう#2〜自己相関、波形分解など〜
24:58
データサイエンス塾!!
Рет қаралды 11 М.
У вас там какие таланты ?😂
00:19
Карина Хафизова
Рет қаралды 19 МЛН
風船をキャッチしろ!🎈 Balloon catch Challenges
00:57
はじめしゃちょー(hajime)
Рет қаралды 24 МЛН
エクセルで「時系列分析」できるようになる動画〜未来予測など〜
20:43
Pythonで時系列分析してみよう#1〜時系列データの基本〜
17:05
データサイエンス塾!!
Рет қаралды 19 М.
AIの評価指標を完全マスターする動画!〜適切な指標の選び方〜
40:34
データサイエンス塾!!
Рет қаралды 4,7 М.
実践Deep Learning:波形データの時系列予測
11:22
Neural Network Console
Рет қаралды 16 М.
У вас там какие таланты ?😂
00:19
Карина Хафизова
Рет қаралды 19 МЛН