One of the best videos I have watched. Very detailed Explanations. Keep up the good work
@soroushmehraban11 ай бұрын
Thanks 🙂
@senpanwu51637 ай бұрын
Great Work! You explained 1000 times better than my uni lecturer :D
@holiddiiin9 күн бұрын
bro you did actually the best video for eexpaling Rcnn
@bhavanamalla954 Жыл бұрын
Such a great video!! Keep them coming!
@AsadullahMukib2 ай бұрын
the way you organised the following content are just awesome ..
@ahmedjawadrashid66611 ай бұрын
Such an underrated video. Well done mate!
@soroushmehraban10 ай бұрын
Glad you enjoyed it!
@gotagando24492 жыл бұрын
Great work. I like how you made youtube chapters to explain independent techniques like NMS. Really useful. Many people don't have the time to go through papers in details and just run the codes to get things done. Your videos could be helpful to solve that problem. I'm personally hoping to see videos on YOLO series especially the YOLOX model :) You could also talk about the object detection models landscape and how each model has pros/cons w.r.t. inference time (FPS) and performance.
@soroushmehraban2 жыл бұрын
Wonderful feedback, Gota. I'll make sure to create them in the future
@layer8man2 жыл бұрын
Very nice! I can't wait to see more videos like this!
@soroushmehraban2 жыл бұрын
Thanks, Jeffrey! Wait for the better ones then 😄
@vivekdehulia51569 күн бұрын
Very well explained . Thank you
@Hansly_rz8 ай бұрын
oh my it explains everything at once! Thank you for making this video!
@ceritatujuhdesember5393 Жыл бұрын
This so easy how i can uderstand about RCNN and that is because your explanation! thank you very much, i love your video
@soroushmehraban Жыл бұрын
Glad you liked it!
@MyungeinHan10 ай бұрын
Simple and easy to understand! Thank you for making this video :)
@soroushmehraban10 ай бұрын
Glad it was helpful!
@navdeepsokhi22842 ай бұрын
Very nicely explained with animation 💜
@cbngu5s2yf3ai12l Жыл бұрын
Thanks for your work! It's helps me a lot! Appreciate that~
@jacobyoung20452 жыл бұрын
Awesome video Now I can read the paper and use the video as a guide.
@soroushmehraban2 жыл бұрын
Glad you liked it!
@Broadsword072 жыл бұрын
This is great. Nice work!! Waiting for more such videos.
@soroushmehraban2 жыл бұрын
Thanks, Raghuveer! Appreciate it.
@MuhammadArnaldo2 жыл бұрын
Nice, this topic deserves its own playlist. RCNN has so many component, you can make separated short video for each component, so it wont be overwhelming for the viewers.
@soroushmehraban2 жыл бұрын
Thanks, Muhammad. I actually want to create videos for other object detection algorithms as well and put them in a playlist. From my past experience and based on the videos I've seen, usually, long videos get more viewers. I already separated this video into different chapters and viewers can watch each one on their own time. It's a kinda subjective opinion I believe.
@zukofire6424 Жыл бұрын
@@soroushmehraban how about Yolo?
@yassersouri60842 жыл бұрын
Great video. Good job. Request for follow up videos: Faster R-CNN, Mask R-CNN, DETR
@soroushmehraban2 жыл бұрын
Thanks, Yaser. I'll post them. But first I'll post Fast R-CNN
@celestchowdhury26052 сағат бұрын
best explanation ever!
@Vinay1272 Жыл бұрын
Thanks a lot for this! It was really clean and precisely explained. mAP explanation was on point.
@soroushmehraban Жыл бұрын
Glad you liked it!
@amirparsa_s2 жыл бұрын
Good job Soroush, Very nice video! It helped me a lot specially to understand the mAP metric. Just Keep going :)
@soroushmehraban2 жыл бұрын
Glad you liked it :)
@charbelbm732 жыл бұрын
Nice video! Keep up the great work
@soroushmehraban2 жыл бұрын
Thank you, Bellz!
@MadinideAlwis5 ай бұрын
Very interesting! need more videos.
@ericsy782 жыл бұрын
Cool! Nice work💥
@sanurcucuyeva19584 ай бұрын
I really appreciate it, very good explanation. Thanks!
@anwarvic2 жыл бұрын
Cool video! Keep them coming
@soroushmehraban2 жыл бұрын
Thanks, Mohamed!
@seokeonchoi40492 жыл бұрын
Cool! Nice work.
@soroushmehraban2 жыл бұрын
Thanks, Seokeon. I hope you find it useful.
@arefmotamedi79312 жыл бұрын
Well done. That was great
@soroushmehraban2 жыл бұрын
Thanks Aref
@nestedhuman89519 ай бұрын
dude!!! that was such a nice explanation
@soroushmehraban9 ай бұрын
Thanks!
@huyinit10 ай бұрын
thank you so much , such an amazing video . Can i ask which tool/app you using for this slide? i love how they working
@soroushmehraban10 ай бұрын
Thanks for the feedback Huy 🙂It's just a powerpoint.
@sarahsameh99949 ай бұрын
thank you for your great explanation! keep going!
@soroushmehraban9 ай бұрын
Thanks!
@Retburstjk9 ай бұрын
clean explanation give this man more sub !
@zukofire6424 Жыл бұрын
Thanks very much for this, it's much clearer to me know (after starting from just the paper). (Edit : this Paper is clearly explained in every way)
@soroushmehraban Жыл бұрын
Thanks for the honest feedback 😃 looking at the previous videos posted, I’m not using that phrase anymore.
@zukofire6424 Жыл бұрын
@@soroushmehraban Oh I spoke too fast, (bc I watched some parts of the video several times, I thought you used the expression several times)... Yeah I take it back apologies, oc everyone can use this expression!
@tandavme2 жыл бұрын
Great explanation, keep doing it!
@soroushmehraban2 жыл бұрын
Thanks, Alexander!
@hamidrezahemati88376 ай бұрын
Great video. keep up the good work
@aliaghababaee9810Ай бұрын
great work!
@ishaanyadav61032 жыл бұрын
Nice one! Please make more
@soroushmehraban2 жыл бұрын
Thanks, Ishaan. Sure!
@anupammishra82733 ай бұрын
Great explanation
@chayanshrangraj42982 жыл бұрын
Nice job! Keep up the good work!
@soroushmehraban2 жыл бұрын
Thanks for the positive energy, Chayan!
@kaan_aksit2 жыл бұрын
Informative video!
@soroushmehraban2 жыл бұрын
Thanks, Kaan!
@canxkoz2 жыл бұрын
Congrats. Good work.
@soroushmehraban2 жыл бұрын
Thanks, Can! Appreciate it.
@Javad-ek4es Жыл бұрын
Very nice! Thanks a lot! May you please upload your slides, too?
@santoshkamble1290 Жыл бұрын
Great explanation❤
@nestedhuman89519 ай бұрын
what is the background music you are using in the video ?
@soroushmehraban9 ай бұрын
I don't remember that was a long time ago. I'm not using any background music anymore.
@alinaderiparizi71932 жыл бұрын
Great Job, Can't wait to see more videos of you. Can you fix your microphone for next videos?
@soroushmehraban2 жыл бұрын
Thanks, Mohandes. I'll try enhancing the quality by changing my recording method but still it's not gonna be perfect. At least not in the first few videos.
@zaidkhan256513 күн бұрын
literally , Clearly EXPLAINED
@alirezaghaffartehrani12792 жыл бұрын
bright explanation Thanks
@soroushmehraban2 жыл бұрын
Thanks, Alireza. I hope you found it useful.
@pouyaaminaie60412 жыл бұрын
Nice work
@soroushmehraban2 жыл бұрын
Thanks, Pouya.
@lakshaydulani2 жыл бұрын
good work
@soroushmehraban2 жыл бұрын
Thanks, Lakshay.
@gaussic69852 жыл бұрын
Keep up the good work
@soroushmehraban2 жыл бұрын
Thanks!
@imadsaddik Жыл бұрын
Thank you so much
@NagarajuSeru-rc7lb Жыл бұрын
Very Nice.. Thank you so much.... I have a question related to NMS... that As you explained about NMS, IOU of classified object regions will calculated over the ground truth value at the time of training and validation but what about at the time of inference ? since you have grouth truth values at time of train and validate only but not at inference. awaiting for your response.... thank you so much adavance
@sriharsha5802 жыл бұрын
How does NMS works in inference? As we won't be having ground truth
@soroushmehraban2 жыл бұрын
That's a great question. I think I should have mentioned that. Our model might predict different bounding boxes pointing to the same object. In such a scenario, we do the following: 1) Sort all the predicted bounding boxes based on the class score (In descending order). 2) Pick the first bounding box that has the highest probability score. 3) Compute the IoU of the selected bounding box with other bounding boxes pointing to the same class. 4) If the IoU of any bounding box with this bounding box is larger than a threshold (such as 0.5), then we remove the bounding box having the lower class score. I hope it's clear.
@NagarajuSeru-rc7lb Жыл бұрын
@@soroushmehraban i think following conditions might not be sufficient, because even if we sort and pick highest one... again we left with question of all these are pointing to same object location or reference really in a image ? same object references might be at multiple places please clarify this doubt
@soroushmehraban Жыл бұрын
That's true we might have same objects at multiple places. let's say we have object A at location (x1, y1) and (x2, y2). for location (x1, y1) our model might predict multiple bounding boxes all refer to the object A. Out of all these bounding boxes we only keep the one that has the highest score and others if they have IOU higher than a threshold with this bounding box, we remove them. For object A at place (x2, y2), since it's in different area of the image, the IoU with the one having highest score is less than a threshold, so we keep the second one having the highest threshold and again others having IoU higher than a threshold, we remove them. @@NagarajuSeru-rc7lb