R - Hierarchical Multiple Regression

  Рет қаралды 8,693

Statistics of DOOM

Statistics of DOOM

Күн бұрын

Пікірлер: 22
@Artyom109Zinchenko
@Artyom109Zinchenko 5 жыл бұрын
Dear Dr. Buchanan, thank you very much for the videos and for sharing everything at OSF! I really like your style of teaching.
@StatisticsofDOOM
@StatisticsofDOOM 5 жыл бұрын
Thanks! Appreciate the kind words.
@jasoncain1575
@jasoncain1575 4 жыл бұрын
You started this off just like I start off my R video walkthroughs for students. I laughed pretty hard.
@StatisticsofDOOM
@StatisticsofDOOM 4 жыл бұрын
Many many spelling errors will be found across these videos and life just in general. Much easier to notice when recording ;).
@VictorianoOchoa
@VictorianoOchoa 2 жыл бұрын
Very very helpful. Thank you so much!
@StatisticsofDOOM
@StatisticsofDOOM 2 жыл бұрын
Thank you!
@eamoncolvin1748
@eamoncolvin1748 4 жыл бұрын
Has anyone cited this video in a manuscript? It's the clearest procedural description of hierarchical regression I've seen and I'd like to credit it for an upcoming paper!
@StatisticsofDOOM
@StatisticsofDOOM 4 жыл бұрын
Thank you! APA has a new version for youtube: www.scribbr.com/apa-examples/youtube/ (I've done this for tutorials when I've used them and they aren't papers officially).
@kristinabeau
@kristinabeau 5 жыл бұрын
Thank you so much for sharing your knowledge with us ! I use your videos so often in order to enhance my statistical skills. I was wondering, what do we do if a variable of the first step model isn’t significant ? So I run a new model without it and then go to the next step ? Or do I need to keep it, as it was part of my hypothesis ?
@StatisticsofDOOM
@StatisticsofDOOM 5 жыл бұрын
I would say you’d keep running your planned steps, just noting step 1 was not significant.
@mr235
@mr235 5 жыл бұрын
Hey, Dr. Buchanan, thanks for your videos, very helpful stuff! I have a question: If I run a Hierarchical Multiple Regression where I add my control variables in the first model and then add 4 IVs in the second model, what is my number of IVs for the leverage? Do I put "k=4" or "k = number of control variables" or "k=4 IVs + Amount of control variables?" Thanks in Advance for the help!
@StatisticsofDOOM
@StatisticsofDOOM 5 жыл бұрын
When you are doing the screening you would run the last model (i.e. with all the variables). Then k would equal how many variables you have total, including any control variables, dummy coded columns, etc. If you want to use control variables, it's normal to put them in the first step yes.
@mr235
@mr235 5 жыл бұрын
@@StatisticsofDOOM Thank you for your answer!
@eamoncolvin1748
@eamoncolvin1748 4 жыл бұрын
Any tips on how to make a plot that showcases the *differences* between the models? The plot you suggest includes all 3 IVs (Age + Gender + Extraversion). However, if the research question of interest is how much value Extraversion adds to predicting Car Care (over and above Age and Gender) this summary figure isn't the most informative. Any thoughts?
@StatisticsofDOOM
@StatisticsofDOOM 4 жыл бұрын
True ... hmmm, that's usually an R2 question sooooo maybe, you could add a separate regression line to the plot which has the predicted values for the model without extraversion for comparison? One of them should be "closer" to the participant points. I"m thinking of those textbook type pictures which have like a flat line then have a tilted line to show you how much better it matches the dots.
@eamoncolvin1748
@eamoncolvin1748 4 жыл бұрын
@@StatisticsofDOOM Thanks for the idea! I'll give it a shot. Very grateful for all of your videos and insights :)
@daphnenakhid2881
@daphnenakhid2881 4 жыл бұрын
Thank you for the video! When calculating power, why is the partial r-squared 0.09 for a medium effect size? Shouldn't f squared be 0.15? Thank you!
@StatisticsofDOOM
@StatisticsofDOOM 4 жыл бұрын
You can go either way! I am using r = .3 as a medium correlation, which squared is .09. You should always use values that make sense your own research field.
@hollysullivan-toole4872
@hollysullivan-toole4872 4 жыл бұрын
Thank you so much for all of your videos--you are a great teacher!!! About the partial correlations, when I used your code for computing pr on my own dataset (with more control variables than your example dataset), I got different values than the ones SPSS gave me. I used this code instead and got the same values as my SPSS output: partial_X = pcor.test((Data[ , c(X)]), (Data[ , c(Y)]), (Data[ , c(Z1,Z2,Z3)])) where X = the column with X variable, Y = column with Y variable (criterion), and the Z values are columns for all variables I wanted to control for. Maybe I did something wrong when I tried your code on my data, but I wanted to add this other method here in case anyone else had trouble computing partial correlations.
@StatisticsofDOOM
@StatisticsofDOOM 4 жыл бұрын
I’d have to look at that function - don’t forget to square them for effect size.
@ibrahimbashimam9149
@ibrahimbashimam9149 4 жыл бұрын
Thanks a lot !!!!
@stevehawley6737
@stevehawley6737 6 жыл бұрын
Fantastic tutorial. Thanks!
R - Moderation Analyses using QuantPsyc
31:35
Statistics of DOOM
Рет қаралды 1,4 М.
Hierarchical Linear Regression
17:30
David Caughlin
Рет қаралды 14 М.
GIANT Gummy Worm #shorts
0:42
Mr DegrEE
Рет қаралды 152 МЛН
I'VE MADE A CUTE FLYING LOLLIPOP FOR MY KID #SHORTS
0:48
A Plus School
Рет қаралды 20 МЛН
24 Часа в БОУЛИНГЕ !
27:03
A4
Рет қаралды 7 МЛН
SPSS - Hierarchical Multiple Linear Regression
35:37
Statistics of DOOM
Рет қаралды 24 М.
R - Binary Logistic Multilevel Models
54:38
Statistics of DOOM
Рет қаралды 17 М.
R - Two-Way Between Subjects MANOVA
30:13
Statistics of DOOM
Рет қаралды 9 М.
Learn Statistical Regression in 40 mins! My best video ever. Legit.
40:25
R - Multilevel Models Lecture (Updated)
56:09
Statistics of DOOM
Рет қаралды 46 М.
Multiple and hierarchical linear regression in SPSS
26:09
Vahid Aryadoust, PhD
Рет қаралды 9 М.
Linear Regression, Clearly Explained!!!
27:27
StatQuest with Josh Starmer
Рет қаралды 1,4 МЛН
R - Binary Logistic Regression Lecture & Example
31:50
Statistics of DOOM
Рет қаралды 8 М.
All Learning Algorithms Explained in 14 Minutes
14:10
CinemaGuess
Рет қаралды 284 М.
Regression Analysis | Full Course
45:17
DATAtab
Рет қаралды 862 М.
GIANT Gummy Worm #shorts
0:42
Mr DegrEE
Рет қаралды 152 МЛН