Support StatQuest by buying my book The StatQuest Illustrated Guide to Machine Learning or a Study Guide or Merch!!! statquest.org/statquest-store/
@computerconcepts33522 жыл бұрын
👍
@DrOats22 Жыл бұрын
Hi, Josh! I just wanted to say thank you for these videos! The way you explain concepts has been honestly life changing for me (in terms of my academic career). Concepts that I've struggled with for years are finally becoming clear. I just wanted to take a moment to express my appreciation, and let you know how impactful these videos are!
@statquest Жыл бұрын
@@DrOats22 Thank you very much! :)
@herpsenderpsen2 жыл бұрын
This is such a breath of fresh air as opposed to the unecessarily difficult 'explanations' we have to work with in statistical analysis courses. Your videos are awesome.
@statquest2 жыл бұрын
Wow, thank you!
@damonguzman8 ай бұрын
You're videos are the single greatest resource for my education on machine learning and AI. If I lost access to your videos, I would be devastated.
@statquest8 ай бұрын
Glad you like them!
@vcello64502 жыл бұрын
Yes!! Thanks for this. You are saving grad students around the world!
@statquest2 жыл бұрын
Happy to help!
@wbdill2 жыл бұрын
And former grad students who haven't touched linear regression in 25 years! :) What a great concise refresher. BAM!
@false_binary Жыл бұрын
Excellent vid & totally helped me again with my regression homework! One of the toughest challenges I have is writing and speaking Regression! One of your last slides around 10:29 helped me learn how to connect a positive / negative variable relationship with R2...love you guys, seriously!
@statquest Жыл бұрын
Glad it was helpful!
@Monoglossia2 жыл бұрын
It's INSANE how clear this is, thank you!
@statquest2 жыл бұрын
Thank you! :)
@skyblue70142 жыл бұрын
one of the most well explained about R, thanks for sharing! no time wasted in this video!
@statquest2 жыл бұрын
Thank you!
@kevingutierrez38 Жыл бұрын
This is just what I was expecting from an explanation of what R-squared is. Thank you very much for making it clear and simple
@statquest Жыл бұрын
Glad it was helpful!
@mikas90988 ай бұрын
clicked for the title, stayed for the content. thanks for this
@statquest8 ай бұрын
bam!
@snowwolf4148 Жыл бұрын
Beautifully explained! Loved the “Correlations close to 0 are lame “😂
@statquest Жыл бұрын
:)
@Syca_Red Жыл бұрын
When I saw "is the mean wweight the best way to predit mouse weight", I thought, "it is stupid". And then when I see the formula of R-square, I found that "I was stupid". Awesome videos and it really helps.
@statquest Жыл бұрын
bam!
@shahjahanbd2000 Жыл бұрын
Your videos are the most helpful and easiest to follow!
@statquest Жыл бұрын
Glad you like them!
@Maddoxsings7 күн бұрын
I am currently stressing about a final for Health Stats, and this gave me an amazing laugh. I love the description of R squared (totally not lame)! Thank you!
@statquest7 күн бұрын
Good luck!
@surinderpalsingh4258 Жыл бұрын
people have no idea how much of a gold this video is
@statquest Жыл бұрын
Thank you! :)
@ronram61259 ай бұрын
You keep this up and I’ll have to forward my tuition to your address.
@statquest9 ай бұрын
BAM! :)
@mohamedasiqshajahan120011 ай бұрын
Excellent explanation. Consider this comment as 1million likes.❤❤
@statquest11 ай бұрын
Thank you very much! :)
@averysmith2 жыл бұрын
Josh, I'm literally teaching my students this today! Going to refer them to this video.
@statquest2 жыл бұрын
BAM! Avery, I'm glad this is helpful. This is actually the first StatQuest I ever made, back in the day. I had to re-upload it yesterday due to some oddness on behalf of KZbin, but it's still a classic and the video that got the whole thing started.
@Matt-qi5ff Жыл бұрын
This is excellent. Why can't professors explain as well and clearly as you? I had a linear regression class yesterday and I had never even heard about variation before, only standard deviation. I didn't know the reason it was squared either. Thanks a lot
@statquest Жыл бұрын
Thanks!
@B-hooktuber8 ай бұрын
Incredible explainations. I'm so glad I found this chanel/book!
@statquest8 ай бұрын
Thank you!
@OfisLab2 жыл бұрын
All stats courses any level of education must be taught like that. Otherwise for majority of the people stats is ambiguous and difficult to understand. But feel like lecturers are saying this is time consuming, we have a lot of topics to cover and etc. Luckily we have nice KZbin channel and online documents to supplement the courses. Thanks for the great video!
@statquest2 жыл бұрын
Thank you very much! I appreciate it.
@pulzewidth Жыл бұрын
Thank you UNC-Chapel Hill for saving my life on my AP Stats test. I hope my EA is accepted.
@statquest Жыл бұрын
BAM! Congratulations and good luck!
@govarthenanrajadurai98175 ай бұрын
@ 03:30 How did you choose which line (which angle, starting point) to fit to the data? Shouldn't there be a method to find a line so that the line's R squared equals plain old R's squared?
@statquest5 ай бұрын
There is an analytical method, meaning an equation we can plug our data in to get a result, that will give us the line the minimizes the sum of the squared residuals. The line that minimizes the sum of the squared residuals is defined as the best fitting line. Alternatively, we can use an iterative method like Gradient Descent to find the best fitting line. For details on Gradient Descent, see: kzbin.info/www/bejne/qXXZZZlqqJeGeJo
@joshliao00607 Жыл бұрын
That's so intuitive! You really save my Midterm
@statquest Жыл бұрын
Thanks!
@lacrimosa29942 жыл бұрын
Thank you so much!!! You explain these concepts so easily!! Saving lives one video at a time 😁💕
@statquest2 жыл бұрын
Thank you!!! :)
@armpistolguy4359 ай бұрын
Holy mother of god THANK YOU for this video, I was looking online at a bunch of websites (some paywalled) and none of them explained them as well as this video. Thank you for providing examples and explaining the how rather than the what. 😁😁
@statquest9 ай бұрын
Glad I could help!
@JC-to3lq Жыл бұрын
mind blown. amazingly well explained thank you!
@statquest Жыл бұрын
Thank you!
@louCanitz Жыл бұрын
Thank you so much and thank you UNC Chapel Hill for enabling you to make these
@statquest Жыл бұрын
bam! :)
@isaaccarroll20922 жыл бұрын
StatQuest is the best thing to come out of UNC since MJ
@statquest2 жыл бұрын
TRIPLE BAM! :)
@prabhu__why_not10 ай бұрын
Time spent sniffing a rock 🤣🤣🤣
@statquest10 ай бұрын
:)
@desisto0079 ай бұрын
Just awesome plain explanation 🎉
@statquest9 ай бұрын
Thank you!
@Ligress Жыл бұрын
thank you so much, subscribing right now!
@statquest Жыл бұрын
Thank you!
@thegeek0017 Жыл бұрын
This is a good video. Funny, yet informative.
@statquest Жыл бұрын
Glad you enjoyed it!
@AgusBektiR2 жыл бұрын
Thank for repost this precious r-squared explanation. Yesterday i cant play this modul because of payment bla bla bla bla. Super thanks !
@statquest2 жыл бұрын
Sorry you had trouble and I hope it never, ever happens again. It was very, very frustrating from my end since I've tried to hard to make my videos free for the world.
@squaidinkarts6 ай бұрын
Banger intro, man
@statquest6 ай бұрын
Thanks!
@vijaythapa9200 Жыл бұрын
Very clearly explained. Thank you
@statquest Жыл бұрын
Thank you!
@oleg066710 ай бұрын
Great clear explanation! Thanks!
@statquest10 ай бұрын
Glad it was helpful!
@nak6608 Жыл бұрын
Is variance different from variation? At 2:15 we find the sum of the squared differences but we don't divide it by the number of observations - 1. Is there a reason for this?
@statquest Жыл бұрын
In this case we don't need to divide by n-1 because the denominators will cancel out, leaving us with just the numerators. So we save our selves a step and omit it.
@nak6608 Жыл бұрын
@@statquest Thank you! It's so obvious now that you pointed it out lol
@jamiehaskellyarn Жыл бұрын
Thank you for this video! I have a much better understanding now
@statquest Жыл бұрын
Glad it was helpful!
@sonaliverma4099 Жыл бұрын
Thank you so much for explaining everything in easier way !
@statquest Жыл бұрын
Thanks!
@jessamynfinneran5036 Жыл бұрын
This was wonderful. Thank you so much!
@statquest Жыл бұрын
Glad you enjoyed it!
@itsbosco1025 Жыл бұрын
Very clear and helpful, thank you
@statquest Жыл бұрын
Thanks!
@princechiloane7659 Жыл бұрын
🤣🤣 The Intro . I'm enjoying stats thanks to you
@statquest Жыл бұрын
:)
@time5732 жыл бұрын
I can't believe this videos are fresh new. I'm sorry for everyone who had to give Statistics without watching these first
@statquest2 жыл бұрын
BAM! :)
@Angus-jd6ng7 ай бұрын
very clear and concise
@statquest7 ай бұрын
Thanks!
@mjollnirboy10 ай бұрын
Such a beautiful explanation. Thank You! :-)
@statquest10 ай бұрын
You're very welcome!
@krish46598 ай бұрын
10:00 explains 25% of original varaition means , 25% less variation compared to that of mean line. right?
@krish46598 ай бұрын
coeffficient of correlation is square root of coefficient of determination ? 🙂
@statquest8 ай бұрын
Yep, 25% less variation around the regression line than around the mean.
@madsgamessАй бұрын
Great video. Thank you
@statquestАй бұрын
Thanks!
@namelessbecky6 ай бұрын
Thank you. Very useful.
@statquest6 ай бұрын
Glad it was helpful!
@artbag45029 ай бұрын
I have a question: in some cases I get an out of sample R squared which is negative, for example with multiple linear regression or even simple one-variable linear regression. Does that tell me the model is less capable of predicting the response compared to a simple mean? While in sample, there is there no difference between the R squared of a simple linear regression and the square of Person's correlation between two variables?
@statquest9 ай бұрын
I'm not sure I understand what you mean by "out of sample" and "in sample", but if you are calculating R^2 using data the model was not originally fit to, then it is possible to get negative values.
@artbag45029 ай бұрын
@@statquest ah I see! I meant that sometimes I would fit a model on a training set, and among the metrics to evaluate its performance on a dev/test set I would use the R squared, occasionally obtaining negative values. But I see now that it's a pretty different scope compared to the one proposed in your video, since I'm not trying to measure how related two variables are, but rather trying to evaluate a model! Thank you for your reply btw!!
@andyn60535 ай бұрын
How to apply it in multivariable linear regression? Calculate R^2 for each feature vs the dependant variable? Could it then be used as a feature selection method? Is that what is called Pearson correlation?
@statquest5 ай бұрын
For multivariable linear regression, are still comparing the model (the fit line) to the mean of the values on the y-axis. For more details, see: kzbin.info/www/bejne/pJyVdIR_idKSm9E
@lukhanyozimela97155 ай бұрын
This variation around the mean/regression line that you speak of, is that the mean squared error?
Hi thanks for your videos! Any chance is there a statquest for adjusted R-squared?
@statquest7 ай бұрын
I mention it in my video on linear regression: kzbin.info/www/bejne/pJyVdIR_idKSm9E
@michaelr1624 Жыл бұрын
Hi, I see a lot of your Analytics videos are repeated. Are these refreshed with new info or simply repeated? Do I need to watch both or just the newest one?
@statquest Жыл бұрын
They are the same. For some strange reason, about a year ago some of my videos got stuck behind a paywall. So I re-uploaded all of the videos behind the paywall so that they would, once again, be available to everyone for free. It now seems that whatever freak event happened back then has become undone, so now I have 2 copies of a handful of videos.
@JKentJr2 жыл бұрын
Starmer = Hero
@statquest2 жыл бұрын
Thank you! :)
@DigitalOutlawed4 ай бұрын
Amazing Explanation.
@AdnanKhan-cx9it Жыл бұрын
thanks for the nice explanation. I wonder what is the difference between R2 formulation the one you explained and this one --> , R2 = 1 - SSE / SST, where SSE is sum of squared errors, and SST is sum of data variance.
@statquest Жыл бұрын
There is no difference. One formula can be derived directly from the other.
@livrepensador2 ай бұрын
I loved the video! I would like to give this video ten likes!
@statquest2 ай бұрын
Thank you!
@darkerufo4 ай бұрын
I'm repeating my question from the original video here: 4:21 I do not understand how this - var(blue line) - is calculated manually. Thank you.
@statquest4 ай бұрын
You may actually want to watch the whole linear regression playlist: kzbin.info/aero/PLblh5JKOoLUIzaEkCLIUxQFjPIlapw8nU
@darkerufo4 ай бұрын
@@statquest You replied so quickly. I will look at this, thank you!
@structuralcraft Жыл бұрын
Sometimes a single video is better than a whole pdf
@statquest Жыл бұрын
:)
@shikhakansal4402 Жыл бұрын
I love Statquest videos however, this video had me confused. I tried to study R-Squared from other sources and they told me a different formula which was, R squared = 1-(SSR/SST). Are there different kinds of R squared used in different situations?
@statquest Жыл бұрын
It's the same formula, just written differently. However, you can do the algebra and show that they are equal to each other. See: en.wikipedia.org/wiki/Coefficient_of_determination
@shikhakansal4402 Жыл бұрын
@@statquest Thanks. Thats helpful. I will try that.
@saagerbabung5652 Жыл бұрын
The square of correlation coefficient (i.e., predicted and true values) is equal to "R squared" only in linear regression, and not in any other regression like decision tree regressor, support vector regressor, THIS is not mentioned in the video?
@statquest Жыл бұрын
That is correct. When I made this video, way back in early 2015, I only had linear regression in mind.
@tonycardinal4132 жыл бұрын
Thanks ! Ques: is R squared the % of y variance explained by X or explained by the model( regression equation) ?
@statquest2 жыл бұрын
It depends on the model. If the model only contains a single variable, X, then R-squared tells us the % of variance explained by the model, or X. Both are true. However, we can also calculate R-squared for models with many variables. For details, see: kzbin.info/www/bejne/pJyVdIR_idKSm9E and kzbin.info/www/bejne/sHq3enmKqM6phJo
@manyapahwa7086 Жыл бұрын
just beautiful!!
@statquest Жыл бұрын
Thank you!
@kaebee200310 ай бұрын
If I only know the angle between the two lines, Will I be able to find the R2 value? (Like Tan theta?)
@statquest10 ай бұрын
No.
@semp770 Жыл бұрын
Nice video, but Is var(x) supposed to be the variation or the variance?
@statquest Жыл бұрын
Variation and variance are often used interchangeably and, in this case, it's OK.
@ShivamPratap-d9z11 ай бұрын
r^2 = R^2 holds only for simple linear regression as I know, please correct me if i am wrong.
@statquest11 ай бұрын
Yep. That's what this video was originally intended to explain - how R^2 relates to linear regression. That's why we compare the fitted straight line to a horizontal line at the mean.
@ShivamPratap-d9z11 ай бұрын
@@statquest Thanks
@niceyzuzu50363 ай бұрын
Bring back stat quest
@statquest3 ай бұрын
I hope to have some new stuff out soon.
@lorenzoplaserrano87342 жыл бұрын
yay more new videos ☺️
@statquest2 жыл бұрын
:)
@reetapantsar Жыл бұрын
this makes sm sense tysm
@statquest Жыл бұрын
bam! :)
@bt786467 ай бұрын
You are the boss
@statquest7 ай бұрын
Thanks!
@mohammadrezaghiasy66182 жыл бұрын
Hi Sir I am madly addicted to your WAY OF EXPLAINING I personally owe you a lot I love math, the way you quest it recently I was researching on DEA as you surely know data envelopment analysis I now, know what does it mean and how to calculate it. can even pyomo code it. use it blindly ... but WHAT IS THE MAIN IDEA BEHIND DEA? Clearly Explained... searched the web there is no remarkable article or video etc I was thinking if you could make such genius video
@statquest2 жыл бұрын
I'm glad you like my videos and I'll keep that topic in mind.
@vivaines2 жыл бұрын
How did he get the var(mean) of 32 and the var(line) 32? are they just points?
@jeffwang14422 жыл бұрын
Var(mean) and var(line) are numbers that are calculated by the sum of squares residuals. For example, for the var(mean), what you do is you find the difference between the mean and every point, square those, and then sune them up. In the video, this comes out to 32. Similarly, for the var(line) you find the difference between the points and the line, squaring, and summing
@statquest2 жыл бұрын
You can also see: kzbin.info/www/bejne/iau9Z3qmmMuih7s
@trestenpool90452 жыл бұрын
How do I get access to wach some of the videos labeled "Pay to watch" such as kzbin.info/www/bejne/pJyVdIR_idKSm9E. Do I have to become a certain level member or just pay for the video itself?
@statquest2 жыл бұрын
I've contacted KZbin and am trying to do everything I can to fix this problem. In the mean time, I've re-uploaded that video so that you can still watch it for free: statquest.org/video-index/ NOTE: Whenever you see a note saying you have to pay to watch a video, just scroll down to the first pinned comment and you will see a link to a free version.
@ArnieStein2 жыл бұрын
Awesome!!!
@statquest2 жыл бұрын
Thanks!!
@karimmohanad2k015 ай бұрын
not all heroes wear capes
@statquest5 ай бұрын
:)
@Jerry-ws3mz Жыл бұрын
thanki you so much.
@statquest Жыл бұрын
Thanks!
@arjungupta6622 Жыл бұрын
Hi Josh, can you also explain the F test?
@statquest Жыл бұрын
Sure, see: kzbin.info/www/bejne/pJyVdIR_idKSm9E and kzbin.info/www/bejne/hHeYkJWqhMZ2n8k
@Johnny2tc Жыл бұрын
Ty
@statquest Жыл бұрын
:)
@dylanknight8664 Жыл бұрын
Stat Quest ✊
@statquest Жыл бұрын
bam! :)
@youssefhunter52254 ай бұрын
you are very good
@statquest4 ай бұрын
Thanks! 😃
@Akarshvyas911Ай бұрын
i have a doubt this R square is used to test the accuracy of our model, and it is also used to select the parameters for our model, it will be very helpful if you can come up with a video explaining how to create a full fledged model with proper steps
@statquestАй бұрын
See: kzbin.info/www/bejne/q2LGlGSolL5qg5I and kzbin.info/www/bejne/nqDOcn-aftinbs0 and kzbin.info/www/bejne/fqPVY5SkrrCSa9U
@Akarshvyas911Ай бұрын
@@statquest wow thanks didn't saw old videos great ❤❤❤❤
@muhammadariffahmi908810 ай бұрын
thanks bro
@statquest10 ай бұрын
Any time!
@TheEternalDao Жыл бұрын
Can you make a video explaining ETA squared?
@statquest Жыл бұрын
I'll keep that in mind.
@user-cx5wq9rn6e Жыл бұрын
mate can u update the resolution please.
@statquest Жыл бұрын
Unfortunately updating old videos is a lot harder than you would expect. :(
@supahotfire88866 ай бұрын
So there's a 6% correlation between sniffing rocks and a mouse's weight? Lol
@statquest6 ай бұрын
:)
@namelessbecky6 ай бұрын
why does this video only have the resolution of 360p?
@statquest6 ай бұрын
It's super old, but people still watch it a lot.
@satya7171 Жыл бұрын
Please explain adjusted r square also
@statquest Жыл бұрын
I describe adjusted R-squared in my video on linear regression, here: kzbin.info/www/bejne/pJyVdIR_idKSm9E
@user-ff5sx6pg3d11 ай бұрын
I hate to be a smart ass but I think you are wrong, R^2 COULD BE NEGATIVE, a simple example is if you have a very bad regressor that way too away from all training points, then the variance could be very very large, so variance of the mean minus variance of the model could be negative, the video here is very misleading.
@statquest11 ай бұрын
You are correct. However, when I made this video I was thinking of R-squared only in the context of linear regression, and in that context, R^2 can't be negative. In that context, the worst your model can do is the mean of the y-axis variable.
@atjjr5 ай бұрын
He might be meaning the correlation coefficient, r
@farshaddehqani3502Ай бұрын
@@user-ff5sx6pg3d Slightly so but insignificant in practice. Not very misleading as you try to put it
@rampee10009 күн бұрын
The coefficient of determination (R²) could never be negative; if one squares a -ve number a positive is formed. Hence the reason R² is between 0 and 1.
@rubenestebangarciagomez70402 жыл бұрын
is this a repost Josh?
@statquest2 жыл бұрын
Yes. Something weird happened to the original and now it is behind a paywall. I contacted KZbin and they said there was nothing I could do about it, so I had to re-upload. Sorry for the trouble.
@rubenestebangarciagomez70402 жыл бұрын
@@statquest In other thing.... what would you think of Statquest en Español! (pum!, the most spanish onomatopeia for bam!) I could help in the translation
@statquest2 жыл бұрын
@@rubenestebangarciagomez7040 I think it would be great and it's a dream of mine that I want to come true. I've even been trying to learn spanish on my own (but I'm a slow learner). For StatQuest, I've been using AI to create overdubs for my new videos and I think it is OK. If it's good enough, the cool thing is that it can be used for a ton of different languages.
@rubenestebangarciagomez70402 жыл бұрын
@@statquest I'll try to contact you later. Even will try to sing and play ukulele intros...
@LegoMacman9 ай бұрын
DOUBLE BAM!!!
@statquest9 ай бұрын
YES!
@ShailendraSingh-ex6yj Жыл бұрын
Why is 4 months ago potato quality? Thank you so much for this.
@statquest Жыл бұрын
What time point in the video, minutes and seconds, are you asking about?
@ShailendraSingh-ex6yj Жыл бұрын
@@statquest apologies, it was my attempt at humour. I'm sure it's part of your earlier series that you've re-uploaded recently. The video is fantastic in content.
@alex-st9in Жыл бұрын
Time spent sniffing a rock 😂😂😂
@statquest Жыл бұрын
bam! :)
@hooramirdamadi7513Ай бұрын
I don't khow how to say thank you to be enough
@statquestАй бұрын
:)
@MirGlobalAcademy2 жыл бұрын
Nice
@statquest2 жыл бұрын
Thanks!
@computerconcepts33522 жыл бұрын
Noice 👍 Doice 👍 Ice 👍, ....wait, is this a re-upload?
@statquest2 жыл бұрын
Yes. Without telling me, KZbin put the original behind a paywall, so I re-uploaded it so it would still be free.
@computerconcepts33522 жыл бұрын
@@statquest oofty doof oof oof, Noice 👍 Thanks 👍
@bashiransari6258 Жыл бұрын
Cool !!
@statquest Жыл бұрын
Thanks!
@tdawg67952 жыл бұрын
Why do we Sq R? I need more explanation please :(
@statquest2 жыл бұрын
I'm not really sure if I understand your question. What time point, minutes and seconds, are you asking about?
@tdawg67952 жыл бұрын
@@statquest wow thanks for the quick reply lol. So when you said we sq R so the negative doesn’t cancel out the positive, could you give some examples on that?
@statquest2 жыл бұрын
@@tdawg6795 We square the difference between the lines and the actual values. So if the y-axis value for point A is 5 and the y-axis coordinate on the line is 3, then the difference 5-3 = 2. However, if the y-axis value for point B is 1, and the y-axis coordinate on the line is 3, then the difference, 1-3=-2. Now, if we just added those differences together, 2 + -2, we would get 0. And that would make it seem like both points, A and B, were on the line, rather than above and below it. So, instead we add up the squares: 2^2 + (-2)^2 = 8, and that makes it seem less like the points were on the line.
@tdawg67952 жыл бұрын
@@statquest thank you, I believe I’m imagining the visuals correctly in my head. Please make a video as a sort of deep dive for viewers like me who questions everything? :)
@statquest2 жыл бұрын
@@tdawg6795 Try this one: kzbin.info/www/bejne/iau9Z3qmmMuih7s
@primakovch83322 жыл бұрын
This is great. Can I get a BAM!!! ??
@statquest2 жыл бұрын
bam! :)
@plica06 Жыл бұрын
This is a re-upload from 8-years ago.
@statquest Жыл бұрын
Yep. For some reason the original ended up behind a paywall, so I had to re-upload it.