Rank and Solving Ax=0

  Рет қаралды 107,601

Lorenzo Sadun

Lorenzo Sadun

Күн бұрын

Пікірлер: 15
@mees271
@mees271 6 жыл бұрын
Thank you very much! This really helped me out. You are a great teacher :)
@Crosswalknorway
@Crosswalknorway 10 жыл бұрын
A really clear and helpful video! Just wanted to say thanks!
@danielavrit4526
@danielavrit4526 11 жыл бұрын
Thanks for the video! This really helped me. I have an exam coming up, and my teacher wants us to express solutions in parametric AND parametric vector form.
@informationisallabout8976
@informationisallabout8976 4 жыл бұрын
Find the number of parameters in the solution set of Ax=0 if A is a 5x7 matrix has 3 pivot columns
@akahn8311
@akahn8311 8 жыл бұрын
Saved me hours of reading, Thanx a ton !!!
@neettim
@neettim 10 жыл бұрын
I have 2 questions: 1. Can you please explain to me what Ax = 0 means? Also what does the 'x' mean? I know A is the matrix but what is the 'x'? 2. In the 2nd example how did you get that linear combination at 7:20? You didn't explain how you got the entries for: x3 ( entries ) + x5 (entries). Please help
@lorenzosadun565
@lorenzosadun565 10 жыл бұрын
Ax is the product of the matrix A with the vector x. For this, and for your second question, take a look at my previous videos, "Matrix multiplication" and "Row reduction, row-echelon form and reduced row-echelon form".
@neettim
@neettim 10 жыл бұрын
Lorenzo Sadun alright, thank you!
@matthewjames7513
@matthewjames7513 7 жыл бұрын
Thank you for your video! This was a good refresher! I have a question though! I know that the solution to Ax = b is x = 1/det(A) adj(A) b. So this shows us that x can only have solutions if det(A) # 0. Why then, when we're solving for non trivial solutions (x # 0) to Ax = 0 do we solve for det(A) = 0 ?? In my Engineering class they say det(A) = 0 but then that would mean x = 1/0 adj(A) * 0 = math error :/ I'm really confused! Please help :) Thanks!
@ismaileyaqub6335
@ismaileyaqub6335 8 жыл бұрын
can you use just row echelon form to solve the equations?
@lorenzosadun565
@lorenzosadun565 8 жыл бұрын
+Ismaile Yaqub You can certainly use row-echelon form (REF) to solve the equations, but with reduced row-echelon form (RREF) you can pretty much read off all of the solutions. With REF you still need to do a bunch of back-substitution. On the flip side, if all you care about is how many solutions there are (or more precisely, the dimension of the space of solutions), then you don't even need REF. You just need the rank.
@ismaileyaqub6335
@ismaileyaqub6335 8 жыл бұрын
got it, cheers! your videos have helped me tremendously in first year physics. thank you :)
@ProudRich
@ProudRich 10 жыл бұрын
Thank you . Really well explained .
@charlesn9788
@charlesn9788 7 жыл бұрын
this helped a lot! thanks
@mikecole5485
@mikecole5485 8 жыл бұрын
wow, and what if all your pivots aren't 1's and 0's...
Rank and the Column Space
6:32
Lorenzo Sadun
Рет қаралды 20 М.
The rank of a matrix
17:17
Prime Newtons
Рет қаралды 172 М.
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
BAYGUYSTAN | 1 СЕРИЯ | bayGUYS
36:55
bayGUYS
Рет қаралды 1,9 МЛН
Quando A Diferença De Altura É Muito Grande 😲😂
00:12
Mari Maria
Рет қаралды 45 МЛН
7. Solving Ax = 0: Pivot Variables, Special Solutions
43:20
MIT OpenCourseWare
Рет қаралды 740 М.
Gaussian Elimination & Row Echelon Form
18:40
The Organic Chemistry Tutor
Рет қаралды 2,9 МЛН
Solving Ax=0
10:04
MIT OpenCourseWare
Рет қаралды 66 М.
Find Null Space and Nullity of a Matrix | Linear Algebra
7:53
Wrath of Math
Рет қаралды 76 М.
Free Variables in System of Equations
11:32
Prime Newtons
Рет қаралды 17 М.
Matrices Top 10 Must Knows (ultimate study guide)
46:12
JensenMath
Рет қаралды 123 М.
Row reduction, row-echelon form and reduced row-echelon form
6:15
Lorenzo Sadun
Рет қаралды 868 М.
How (and why) to raise e to the power of a matrix | DE6
27:07
3Blue1Brown
Рет қаралды 2,9 МЛН
It Only Takes Two Weeks
9:40
The Math Sorcerer
Рет қаралды 2,8 МЛН
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН