Real Analysis 32 | Intermediate Value Theorem

  Рет қаралды 25,385

The Bright Side of Mathematics

The Bright Side of Mathematics

Күн бұрын

Пікірлер: 33
@lucaug10
@lucaug10 3 жыл бұрын
One of my favorite theorems from Analysis, together with MVT :)
@epicmorphism2240
@epicmorphism2240 14 күн бұрын
no way bruh
@sharonnuri
@sharonnuri 2 жыл бұрын
Very cool theorem. Interesting to note that the opposite is not true. Let x in [a,b] and f be continious. Then f(x) is not necessarlly in [f(a),f(b)]. The proof pretty much uses the bissection method to find the root of f tilde.
@frederickgriffth4431
@frederickgriffth4431 3 ай бұрын
Helps me a lot. Great proof process!
@brightsideofmaths
@brightsideofmaths 3 ай бұрын
Glad it helped! And thanks for your support :)
@kingarth0r
@kingarth0r 10 ай бұрын
Funny that the "Intermediate value theorem" is the halfway point of the playlist
@brightsideofmaths
@brightsideofmaths 10 ай бұрын
Haha :D
@tychovanderouderaa6154
@tychovanderouderaa6154 2 жыл бұрын
You define \tilde{f} to be -g if g(a) > 0. Then it is very clear that always \tilde{f}(a) ≤ 0, but to me, it is not directly obvious why also \tilde{f}(b)≥0. Let's say instead of the drawn function f, f is a parabola that is flipped at the minimum to get g. Wouldn't then both g(a) and g(b) be less or equal than zero? Thanks in advance! I'm probably missing something obvious.
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Thanks for the question! Don't forget that we first translate the function by y. And because y is intermediate point, it is not possible to have both end points on the same side of the x-axis. Just look again how we have to choose y and how we define g. Best wishes! :)
@Lous_-st6hi
@Lous_-st6hi 8 ай бұрын
Thanks for sharing such an insightful proof.
@brightsideofmaths
@brightsideofmaths 8 ай бұрын
Glad it was helpful!
@TranquilSeaOfMath
@TranquilSeaOfMath 8 ай бұрын
Nice illustration and explanation.
@brightsideofmaths
@brightsideofmaths 8 ай бұрын
Thank you! Cheers!
@Independent_Man3
@Independent_Man3 3 жыл бұрын
when you define f tilde in 4:29, shouldn't it be f tilde = -g when g(a) > g(b) and f tilde = g otherwise ? Because at 3:58 you said that you wanted the value on the right to be larger than the value on the left.
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
Yeah, but remember we shifted the function to the bottom. Therefore g(a) > 0 has the same meaning as g(a) > g(b).
@meshachistifanus8336
@meshachistifanus8336 3 ай бұрын
Proof, suggest a textbook to read along with.
@Hold_it
@Hold_it 3 жыл бұрын
Interesting Theorem. Keep them coming! :D
@someperson9052
@someperson9052 2 жыл бұрын
With this construction, what if \tilde{f} has multiple 0's? Couldn't you then miss the \tilde{y} you're looking for, and end up converging to a different 0? Well actually now after writing this I suppose it's enough that there exist sequences which converge to \tilde{y}...
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Yes, we only have existence here :)
@aidynubingazhibov8933
@aidynubingazhibov8933 2 жыл бұрын
Are {an} and {bn} Cauchy sequences because these are monotonic and bounded (and thus convergent)? Just like in Bolzano-Weierstrass theorem? Also, what books are you using for the videos if any?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Yeah, you could argue like this or simply look at the Cauchy property | a_n - a_m |. This distance can be immediately calculated and one sees that we have Cauchy sequences.
@duckymomo7935
@duckymomo7935 3 жыл бұрын
A discontinuous function can have intermediate value property It was a long debate whether IVT defined continuity and unfortunately we discovered that does doesn’t and in fact we get various levels of continuity (Lipschitz and absolutely continuity)
@chair547
@chair547 2 жыл бұрын
The function f(x) = x (x= 0.5) on [0,1] is discontinuous but IVT holds, no?
@chainetravail2439
@chainetravail2439 2 жыл бұрын
Why unfortunately?
@duckymomo7935
@duckymomo7935 2 жыл бұрын
@@chainetravail2439 because just plain old vanilla continuity isn't enough for a lot of things e.g. continuity is not enough to ensure that the set of all functions is complete (see uniform limit theorem)
@fullfungo
@fullfungo 2 жыл бұрын
@@chair547 what?? a=0.25; b=1 By IVT we should have f(c)=0.1, but it’s not in the interval. You seem to be wrong
@williamwarren5234
@williamwarren5234 6 ай бұрын
I'm happy to say I came up with such a function myself: f(x) = sin(1/x) for x>0, f(0)=0 Discontinuous at 0, but will attain every value on [0,b] for b>0
@fabiomendez-cordoba3902
@fabiomendez-cordoba3902 2 жыл бұрын
Hi, is there problem with the website? It keeps telling me that it can't be found :c
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Thanks! It should work again. I changes some links without changing them in the description.
@johnstroughair2816
@johnstroughair2816 3 жыл бұрын
We have shown [f(a), f(b)] is an interval but is this enough to show f[[a,b]] is an interval?
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
No, that is not enough :)
@johnstroughair2816
@johnstroughair2816 3 жыл бұрын
Ah, so we have to apply IVT to [xmin,xmax]
@julioschneiders8844
@julioschneiders8844 2 ай бұрын
@antoniocleibo
Real Analysis 33 | Some Continuous Functions
9:20
The Bright Side of Mathematics
Рет қаралды 8 М.
Can you prove it? The Intermediate Value Theorem
15:41
Dr Peyam
Рет қаралды 14 М.
Из какого города смотришь? 😃
00:34
МЯТНАЯ ФАНТА
Рет қаралды 2,5 МЛН
Weierstrass M-Test
11:43
The Bright Side of Mathematics
Рет қаралды 4,2 М.
Real Analysis 40 | Local Extreme and Rolle's Theorem [dark version]
11:26
The Bright Side of Mathematics
Рет қаралды 944
Real Analysis 40 | Local Extreme and Rolle's Theorem
11:39
The Bright Side of Mathematics
Рет қаралды 10 М.
Intermediate Value Theorem and Finding Zeros | Calculus 1
8:26
Wrath of Math
Рет қаралды 9 М.
A Proof of the Intermediate Value Theorem
7:12
Mike, the Mathematician
Рет қаралды 612
Intermediate Value Theorem Proof and Application, Bolzano's theorem
10:13
Real Analysis 47 | Proof of Taylor's Theorem [dark version]
10:43
The Bright Side of Mathematics
Рет қаралды 1 М.
Real Analysis 45 | Taylor's Theorem
10:16
The Bright Side of Mathematics
Рет қаралды 34 М.
Real Analysis 41 | Mean Value Theorem
7:41
The Bright Side of Mathematics
Рет қаралды 15 М.
Can you prove it? The Extreme Value Theorem
18:11
Dr Peyam
Рет қаралды 14 М.