I found your channel by chance, and I was simply amazed by the quality and the consistency. Keep up the good work!
@brightsideofmaths3 жыл бұрын
Thanks! Welcome aboard!
@ieppun1342 Жыл бұрын
Thank you so much for this video! I couldn't get where the derivitive of the auxiluary function comes from, but you've shown it so plainly and explained it so easily!
@brightsideofmaths Жыл бұрын
Thanks a lot :)
@Hold_it3 жыл бұрын
I'm happy to finally be able to understand the proof for Taylor :) Thank you very much for this❤️
@douglasstrother65844 ай бұрын
Countless Physics and Engineering Majors saved from intractable problems!
@lucaug103 жыл бұрын
Always such a joy to see a new real analysis video! Thank you for the lessons!
@sinanakhostin66042 жыл бұрын
The way you prove these theorems is similar to creating an art work. I do not have any clue how you come up with these neat proofs! I hope at some point I can also be able to come up with proofs by myself. At this point I only follow your beautifully explained ones.
@nm-de3bw8 ай бұрын
lol he didnt come up with all the proofs in analysis
@Independent_Man33 жыл бұрын
At 5:08, the t and x0 switched places in the definition of capital F subscript n, h
@brightsideofmaths3 жыл бұрын
Yes, that is a mistake there. Sorry.
@speedbird75872 жыл бұрын
Excellent , very nice, short, and instructive proof
@brightsideofmaths2 жыл бұрын
Many thanks!
@cptiglo56323 жыл бұрын
I passed analysis 1 year ago but I Still love ur videos
@pan196822 жыл бұрын
Congratulations you are a real very good teacher we are looking forward expanding your video playlists thanks alot
@brightsideofmaths2 жыл бұрын
Thank you! 😃
@JojiThomas74313 жыл бұрын
Nicely done
@johnstroughair28163 жыл бұрын
Really nice proof!
@weiweng18311 ай бұрын
At 2:31, the professor said “when k is equal to zero, this factor here is defined to be 1.” Is the professor also saying that (h + x_0 - (x_0 + h))^0 is equal to 1 by definition? Do we define 0^0 to be 1 in this series? I thought 0^0 is usually not defined
@brightsideofmaths11 ай бұрын
We don't define 0^0 but the symbol x^0. In other words, we write x^0 but mean the constant function 1.
@awesomecraftstudioАй бұрын
That's crazy. Easy to understand when explained like this, but no idea how people figure this out by themselves. Anyway great video as always tysm.
@brightsideofmathsАй бұрын
Glad you liked it!
@ahmedamr526511 ай бұрын
Great video as usual! Quick question: is it sufficient that the remainder of a Taylor polynomial up to 2nd order includes h^3 to prove that it is the best quadratic approximation? If not, how do I prove that it is the best quadratic approximation to a function?
@brightsideofmaths11 ай бұрын
The 2nd order polynomial is the best quadratic approximation in the sense described in the video. So it's already proven. What exactly do you want to show now?
@ahmedamr526511 ай бұрын
@@brightsideofmaths is that 2nd order polynomial the best because the remainder is of a higher order?
@brightsideofmaths11 ай бұрын
Yes, the remainder goes faster to zero as stated when x approaches x_0. This is actually what we mean by best quadratic approximation in this context.
@sslelgamal52063 жыл бұрын
Thank you! So Taylor expansion does not guarantee that the approximate polynomial $T_n(h)$ is the best fit, i.e. some difference like $|f(x+h)-T_n(h)|^2$ is minimized! Then why is it the best fit?!
@brightsideofmaths3 жыл бұрын
It's the best fit in the sense of the remainder term around the expansion point x_0.
@TheSandkastenverbot3 жыл бұрын
Polynomials that minimize a certain norm are in general different from a Taylor expansion. So if you want a "best fit" polynomial over a finite interval, Taylor expansions are usually not a good bet. But they are an invaluable tool for all kinds of convergence analyses or analyses around a small neighborhood of a point.
@light_rays3 жыл бұрын
Thanks!
@svenlovell3 жыл бұрын
Tut mir leid, wenn das der falsche Platz für so eine Frage ist, aber du hast einen Kommentar geschrieben, dass du das Boox Note Air 2 für Mathe nutzt. Ich bin Mathestudent und spiele schon länger mit dem Gedanken mit ebenfalls ein E-Ink Tablet zu kaufen. Das Remarkable 2 gab es für 260 Euro und so musste ich zuschlagen. Jetzt meine eigentliche Frage, geht es dir generell um das Schreiben auf so einem E-Ink Tablet oder hat das Note Air 2 besondere nützliche Eigenschaften die es besonders gut für mathematisches macht, dass du so begeistert bist? Danke.
@brightsideofmaths3 жыл бұрын
Danke für die Frage! Das Remarkable 2 ist mit Sicherheit genauso gut für deinen Anwendungsfall. Letztendlich hat mich das Note Air 2 überzeugt, da ich alle PDFs problemlos darstellen kann und direkt Kommentare dazuschreiben kann :)
@svenlovell3 жыл бұрын
@@brightsideofmaths Danke dir :)
@minglee51643 жыл бұрын
First time I understood
@pishleback61513 жыл бұрын
Are you going to be covering integration proofs in the future? Very nice videos btw
@brightsideofmaths3 жыл бұрын
The next videos will be about integration :)
@pishleback61513 жыл бұрын
@@brightsideofmaths brilliant stuff :)
@MOVIES57264p Жыл бұрын
I want proper statement of this proof
@brightsideofmaths11 ай бұрын
Proper in which way?
@minglee51643 жыл бұрын
The author must be a mathematician or a PhD in mathematics at least
@MOVIES57264p Жыл бұрын
Can you help me
@lueelee60633 жыл бұрын
ngl that capital F looks alot like a T...
@brightsideofmaths3 жыл бұрын
I see the problem but fortunately I chose another colour there :D