Real Analysis 8 | Example Calculation

  Рет қаралды 33,294

The Bright Side of Mathematics

The Bright Side of Mathematics

Күн бұрын

Пікірлер: 38
@PunmasterSTP
@PunmasterSTP 2 жыл бұрын
Example calculation? More like "Exemplary conversation!" Thanks for presenting the material in such an easy-to-understand and interesting way. I definitely plan to watch this series through to its conclusion!
@cptiglo5632
@cptiglo5632 3 жыл бұрын
This just looks like my stochastics course Rly interesting. I dont have much time for youtube but when I am here I rly enjoy ur video
@PunmasterSTP
@PunmasterSTP 2 жыл бұрын
How did your stochastics course go?
@cptiglo5632
@cptiglo5632 2 жыл бұрын
@@PunmasterSTP I passed it. Exam was horrible tho
@PunmasterSTP
@PunmasterSTP 2 жыл бұрын
@@cptiglo5632 I'm glad to hear you passed, and I'm sorry the exam was horrible! I definitely remember that feeling from a few classes in college. Btw, I don't want to trigger any bad memories, but I was curious what topics were covered in your stochastics course. I am assuming there were a lot of Markov chains; am I right?
@cptiglo5632
@cptiglo5632 2 жыл бұрын
@@PunmasterSTP oh God. I am a german Student I will try to list all the things we did. Discrete random variables and distribution at the beginning Then some other distributions like zipf or poisson and so on Markov chains Random variables with density(it means dichte in German it sounds rly stupid when translating it) Limits and Parameter estimation Confidence intervals Monte Carlo methods Aaand In German we call it "hypothesentest" Maybe hypothesis testing? And some other tests
@PunmasterSTP
@PunmasterSTP 2 жыл бұрын
@@cptiglo5632 That is really interesting and thanks for sharing! As a side note, when you mentioned Zipf, I immediately thought of this Vsauce video! kzbin.info/www/bejne/nHTRaa2pbpZlhac
@duckymomo7935
@duckymomo7935 3 жыл бұрын
It’s not Analysis without deriving e
@tatawhillman3783
@tatawhillman3783 2 жыл бұрын
Hello at 8:52 when you used the inequality
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
@ichkaodko7020
@ichkaodko7020 2 жыл бұрын
I don't get the first part of proof. In order to determine monotonicity, why we use the an+1/1n and 1 here?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
That is one possibility to show a_{n+1} > a_n
@ichkaodko7020
@ichkaodko7020 2 жыл бұрын
@@brightsideofmaths Thank you.
@OscarGarcia-yb5vl
@OscarGarcia-yb5vl 2 жыл бұрын
min 4:50 why or what is the use of the binomial coefficient?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
The binomial coefficient counts the correct occurrences in the binomial.
@Hanulwalker
@Hanulwalker 10 ай бұрын
Why did we use a binomial function? What are we measuring that has a binomial output?
@none_of_your_business
@none_of_your_business 2 жыл бұрын
Shouldn't the ratio test for monotonicity of a sequence be a strict inequality for
@leonfrolje6553
@leonfrolje6553 2 жыл бұрын
No, that would be strict monotonicity then. Monotonically increasing/decreasing sequences (or generally functions) don't necessarily have to increase/decrease all the time, they can also be constant over an interval. Note that a constant sequence is also monotonical according to this definition and thus monotonically decreasing and increasing at the same time.
@wqltr1822
@wqltr1822 Жыл бұрын
8:20, interesting, my analysis book bounds 1/(k!) under a geometric series instead of a telescoping sum. But this method is also cool.
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Yes, I also like it :)
@qiaohuizhou6960
@qiaohuizhou6960 3 жыл бұрын
3:15 Bernoulli’s inequality
@synaestheziac
@synaestheziac 2 жыл бұрын
I tried proving Bernoulli’s inequality by induction and got stuck. I’ve got (1+x)^(n+1) = (1+x)(1+x)^n = (1+x)^n + x(1+x)^n >/ 1+nx + x(1+x)^n = 1 + (n+1)x - x + x(1+x)^n = 1 + (n+1)x + x(-1 + (1+x)^n) But I don’t know what to do with the big last term. I guess I probably need to use the binomial theorem?
@demr04
@demr04 Жыл бұрын
proposition P(k) : (1+x)^k >= 1+k*x base case P(k=1): (1+x)^1 >= 1+1*x 1+x >= 1+x; so base case is correct. Suppose that P(k=n) is correct, show that P(k=n+1) is also correct. First, choose k=n+1 to see what we are dealing... P(k=n+1): (1+x)^(n+1) >= 1+(n+1)*x Second, given that we can transform the left side of P(k=n) into P(k=n+1) we could try to multiply both sides of the inequality by (1+x) in P(k=n) to see what happend... (1+x)^n * (1+x) >= (1+n*x)*(1+x) (1+x)^(n+1) >= 1+x+n*x+n*x^2 = 1+x*(n+1)+n*x^2 (1+x)^(n+1) >= 1+x*(n+1)+n*x^2 Third, note that for x >= 0, we have that 1+x*(n+1)+n*x^2 >= 1+x*(n+1) which is the right side of the proposition for P(k=n+1), hence... (1+x)^(n+1) >= 1+x*(n+1)+n*x^2 >= 1+(n+1)*x (1+x)^(n+1) >= 1+(n+1)*x so P(k=n+1) is true for all x>0 in the real numbers and k in the natural numbers Fourth, given the alternating nature of (-1)^n between positive and negative, we impose the need that (1+x)^n >= 0, so 1+x >= 0 and then x >= -1 There is the proof by induction.
@中文中国-t4u
@中文中国-t4u Жыл бұрын
when will be update on liner algebra english version please ??? if i purchase your subscr.. can i have access to liner algebra eng version??
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Yes, I update it with new videos soon :)
@dassama7637
@dassama7637 2 жыл бұрын
Hii.. Sir, content not visible due to subtitles. Please keep content above the subtitles.
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
You can move the subtitles.
@kristiyansmilyanski3447
@kristiyansmilyanski3447 4 ай бұрын
For me it's really hard to understand 😔
@brightsideofmaths
@brightsideofmaths 4 ай бұрын
That is totally normal!
@gdash6925
@gdash6925 3 жыл бұрын
I think you made a mistake. (n-1)/n is strictly less than 1
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
≤ includes < :)
@gdash6925
@gdash6925 3 жыл бұрын
@@brightsideofmaths Yea but I mean it shouldn't include "="
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
@@gdash6925 Why not?
@gdash6925
@gdash6925 3 жыл бұрын
@@brightsideofmaths because for the case that (n-1)/n = 1 for a natural number n. It makes no sense. Because you can rewrite this as n-1 = n. And that can't happen! However it does make sense if it's strictly less than 1 because then n-1 < n which suffices
@brightsideofmaths
@brightsideofmaths 3 жыл бұрын
@@gdash6925 Please always remember that ≤ means "less or equal". This is a logical "or" and in this sense we use it in mathematics.
Real Analysis 9 | Subsequences and Accumulation Values
8:18
The Bright Side of Mathematics
Рет қаралды 35 М.
Real Analysis 10 | Bolzano-Weierstrass Theorem
6:12
The Bright Side of Mathematics
Рет қаралды 67 М.
Война Семей - ВСЕ СЕРИИ, 1 сезон (серии 1-20)
7:40:31
Семейные Сериалы
Рет қаралды 1,6 МЛН
Who is More Stupid? #tiktok #sigmagirl #funny
0:27
CRAZY GREAPA
Рет қаралды 10 МЛН
Real Analysis 40 | Local Extreme and Rolle's Theorem
11:39
The Bright Side of Mathematics
Рет қаралды 10 М.
Real Analysis 7 | Cauchy Sequences and Completeness
9:14
The Bright Side of Mathematics
Рет қаралды 67 М.
Real Analysis 11 | Limit Superior and Limit Inferior
8:54
The Bright Side of Mathematics
Рет қаралды 71 М.
Real Analysis 45 | Taylor's Theorem
10:16
The Bright Side of Mathematics
Рет қаралды 35 М.
Real Analysis 19 | Comparison Test
8:16
The Bright Side of Mathematics
Рет қаралды 15 М.
Real Analysis 24 | Pointwise Convergence
8:14
The Bright Side of Mathematics
Рет қаралды 42 М.
Complex Logarithm, Branch Points, and Branch Cuts
37:50
DoctorPeregrinus
Рет қаралды 3,8 М.
Real Analysis 14 | Heine-Borel Theorem
6:50
The Bright Side of Mathematics
Рет қаралды 44 М.
Война Семей - ВСЕ СЕРИИ, 1 сезон (серии 1-20)
7:40:31
Семейные Сериалы
Рет қаралды 1,6 МЛН