Real-time semantic segmentation in the browser - Made with TensorFlow.js

  Рет қаралды 17,927

TensorFlow

TensorFlow

Күн бұрын

Пікірлер
@anabakhtar3774
@anabakhtar3774 4 жыл бұрын
Tensorflow JS is literally limitless 💯❤
@hugoznn
@hugoznn 4 жыл бұрын
Yes!! Let's bring machine learning to the browser!
@hiankun
@hiankun 3 жыл бұрын
Same background here (CV+Python). I also found that running apps in browsers is such a powerful and attractive option. Thanks for such a bright mood talk. :-)
@edgarssensalo7567
@edgarssensalo7567 4 жыл бұрын
Wow this is great. Python together with JS in ML will be unstoppable
@sultanakalsekar6800
@sultanakalsekar6800 4 жыл бұрын
Absolutely Correct ...
@hugoznn
@hugoznn 4 жыл бұрын
Yes! A whole world of new opportunities....
@paedrufernando2351
@paedrufernando2351 3 жыл бұрын
@2:26 is where it starts
@superaluis
@superaluis 4 жыл бұрын
Is this running on some GPU or its purely on CPU? If it's running in a browser on CPU so can It be run in real time like that on a mobile phone?
@JasonMayes
@JasonMayes 4 жыл бұрын
TensorFlowJS can run on GPU in browser via WebGL
@rodmallen9041
@rodmallen9041 4 жыл бұрын
Fantastic and extremely useful. Tks a lot!
@jay7670
@jay7670 4 жыл бұрын
Hello I am js developer and I want to start ML and I find out this js library on Internet so any one can please guide me how to start it and where to learn and what type of device I needed ?
@hugoznn
@hugoznn 4 жыл бұрын
Hey, I recommend having a look at the tensorflow.js tutorials (www.tensorflow.org/js/tutorials) and demos (www.tensorflow.org/js/demos). You do not need any special device.
@JasonMayes
@JasonMayes 4 жыл бұрын
Hello there, to use TensorFlow.js you just need any computer or device that can run a web browser like Chrome / Firefox etc or Node.js (Raspberry Pi, or a cloud server for example). You can get started on the TensorFlow.js website. I suggest you check out our premade models as they are very easy to use. Also try Teachable Machine to recognize a custom object in under 5 minutes using JavaScript in the web browser!
@JasonMayes
@JasonMayes 4 жыл бұрын
PS the links are here: www.tensorflow.org/js teachablemachine.withgoogle.com/train
@jay7670
@jay7670 4 жыл бұрын
@@JasonMayes thank you brother I will start 🙂
@DevsLikeUs
@DevsLikeUs 4 жыл бұрын
Awesome! Thank you for sharing.
@hugoznn
@hugoznn 4 жыл бұрын
Thanks for watching :)
@Ceelvain
@Ceelvain 4 жыл бұрын
It's pretty weird to hear someone who want something light and fast to turn to JavaScript. If you want something fast, the first and most important step is to get rid of the browser. Not to add one.
@dimitrioskyriakos3243
@dimitrioskyriakos3243 4 жыл бұрын
Use C++
@JasonMayes
@JasonMayes 4 жыл бұрын
Both Python + Node.js implementation of TensorFlow talk to the C++ bindings behind the scenes so for server side its essentially C++ under the hood. In the browser your only option is JS + WASM if you want the reach and scale of the web for folk to be able to use your model at scale without installing linux, installing tensorflow, installing cuda, cloning your git repo, reading your read me, and if you haven't lost the person by then hope it works and nothing has changed for the deps. :-) Of course you could host server side but then you have latency issues for real time applications, not to mention the cost of running servers for inference for a reasonably popular site can be very high so is not everyone's cup of tea.
@dimitrioskyriakos3243
@dimitrioskyriakos3243 4 жыл бұрын
under the hood is working binary code (machine language!) all thease C++ stuff are compiled to native code that means that's speaking the machine language. The scripting languages are not compiled every time that the interpreters and the runtimes are reading a scripting command it needs sometime to translate this command to a list of machine language code. That needs more time for execution. An other thing that I'm speaking about compiled languages when we have to manage heavy processes is the optimization. option 1 optimization trough the compiler options. option 2: optimization by disassembly the code and optimize the assembly code and after using the assembler to check about reusable code to put it in a routine and call it from there for example or the opposite depend on execution time. So for example you can create a server side a binary code (with C++, object pascal etc) that it can commuicate with your main app using A.P.I. or sockets. For me is absolutely wrong to execute Machine Learning in Fronded(on browser) that it will need resources from user's computer. Sorry for this big text.
@JasonMayes
@JasonMayes 4 жыл бұрын
@@dimitrioskyriakos3243 our Node.js server side implementation actually calls C++ under the hood just like Python does. But you can't do this in the browser which is why it is the way it is, and that is good enough for many usecase that previously were not possible. We can not always execute on server side for privacy reasons / regulations etc.
Enjoying the show - Gant Laborde - Made with TensorFlow.js
11:49
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН
人是不能做到吗?#火影忍者 #家人  #佐助
00:20
火影忍者一家
Рет қаралды 20 МЛН
Building AI models for healthcare (ML Tech Talks)
48:03
TensorFlow
Рет қаралды 73 М.
Building Real-time Apps with Go | Azim Pulat
54:58
Azim Pulat
Рет қаралды 57 М.
Automated Videoing Assistant - Made with TensorFlow.js
15:00
TensorFlow
Рет қаралды 13 М.
6.1: Introduction to TensorFlow.js - Intelligence and Learning
19:01
The Coding Train
Рет қаралды 228 М.
Real Time Body Segmentation Tutorial with Tensorflow.JS and React.JS
24:10
The U-Net (actually) explained in 10 minutes
10:31
rupert ai
Рет қаралды 129 М.
Real-time AR Sudoku solver - Made with TensorFlow.js
10:19
TensorFlow
Рет қаралды 14 М.
Machine Learning Zero to Hero (Google I/O'19)
35:33
TensorFlow
Рет қаралды 1,8 МЛН
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН