Regression and Matching | Causal Inference in Data Science Part 1

  Рет қаралды 34,706

Emma Ding

Emma Ding

Күн бұрын

Пікірлер: 35
@vaibhavthunder
@vaibhavthunder 3 жыл бұрын
One of the best videos on Causal Inference. Just one request, Please have some videos on "Quasi Experiments" and their implementation in R/Python. There's so much of theory about it and so less of how it's being implemented practically.
@grabngoinfo
@grabngoinfo 2 жыл бұрын
Here are some hands-on tutorials on causal inference in Python/R: * Causal Inference Logit Propensity Score Matching (PSM): medium.com/grabngoinfo/causal-inference-logit-propensity-score-matching-psm-c290fd522bb8 * OLS Treatment Effects Estimation Using Python Package Causal Inference: medium.com/grabngoinfo/ols-treatment-effects-estimation-using-python-package-causal-inference-393306d53940 * 8 Matching Methods for Causal Inference Using R: medium.com/grabngoinfo/8-matching-methods-for-causal-inference-using-r-3c32c6aeb498 * One-to-one Matching on Confounders Using Python Package Causal Inference: medium.com/grabngoinfo/one-to-one-matching-on-confounders-using-python-package-causal-inference-5cce5f348863 * Time Series Causal Impact Analysis in Python: medium.com/grabngoinfo/time-series-causal-impact-analysis-in-python-63eacb1df5cc More step-by-step tutorials on causal inference are on GrabNGoInfo Medium page (medium.com/@AmyGrabNGoInfo/list/causal-inference-633898947606) and KZbin channel (kzbin.info/www/bejne/eHSqd6iiZqt4d7M)
@Reftsquabble
@Reftsquabble 11 ай бұрын
Great overview of the techniques and their motivations
@CodeEmporium
@CodeEmporium 3 жыл бұрын
Great! I just uploaded a video on causal inference too haha. Glad it's getting at least some exposure :)
@jaden2582
@jaden2582 3 жыл бұрын
This explanation of the framework is as clear as crystal. Thank you for the effort. Appreciate it!
@user-wr4yl7tx3w
@user-wr4yl7tx3w 2 жыл бұрын
Great content. Very interested in causal inference.
@seant7907
@seant7907 3 жыл бұрын
Great content! Also, thank you for attaching the sources for learning in the description. I am glad I subscribed 🙂
@Maxi_Zhao
@Maxi_Zhao 2 ай бұрын
very good video that cover lots of concept!
@richardcyc
@richardcyc 3 жыл бұрын
Thanks for the explanation! I have a question about the example of propensity score in the video 18:58 . The p(exposure) means the probability to be exposed to harmful contents and other variables are features we used in the prediction model. If so, user 3 and user 9 should have the same prediction result in my opinion because they have same values in all variables(whether actually being exposed to harmful contents shouldn't be taken into consideration). Why are their p(exposure) are different?
@cherylf4788
@cherylf4788 2 жыл бұрын
yeah same question here, @Emma do you mind confirming?
@samsung-ps9ou
@samsung-ps9ou 2 жыл бұрын
I don't think the toy table showed all the features to calculate p(exposure)
@jiaxuluo9618
@jiaxuluo9618 3 жыл бұрын
great video! When would the second half of causal inference be released?
@AnShett
@AnShett 3 жыл бұрын
Awesome content! Some references to real world implementation would be super helpful. Looking forward to the next video on this topic.
@qisideng6593
@qisideng6593 3 жыл бұрын
Thank you so much for this great video! I always find Causal Inference to be extremely useful. Wonder if you could introduce more contents on how we could discover the causal relationships (or how to draw out the DAG) out of observational data in the future?
@rikki146
@rikki146 Жыл бұрын
watching this vid after completing the course on coursera - really helped a bunch
@emma_ding
@emma_ding Жыл бұрын
So glad to hear you found it helpful, Rikki! 😊
@yungetong634
@yungetong634 3 жыл бұрын
so helpful, thank you and Yuan so much!
@dadmehrdidgar4971
@dadmehrdidgar4971 2 жыл бұрын
Loved this video! Thanks! :)
@guimaraesalysson
@guimaraesalysson 2 жыл бұрын
11:32 How can we use Structural Equation Modeling (SEM) to detect this causal relationships ?
@spikeydude114
@spikeydude114 2 жыл бұрын
Great topic - would love to see more examples of this! Maybe exploring what drives certain metrics. Like what variables affect "Demand" more and testing Price, Month of Year, Lag of Demand, etc.
@emma_ding
@emma_ding 2 жыл бұрын
Thanks for the suggestion! 😊 Really appreciate your feedback!
@licdad3066
@licdad3066 2 жыл бұрын
Great video, a quick question, how can we select the training dataset/label of the propensity score model? If the label is biased, the propensity score will be impacted as well
@lunali430
@lunali430 3 жыл бұрын
Good job!
@guimaraesalysson
@guimaraesalysson 2 жыл бұрын
How can we know what variable ? Just check the coefficient of the variable that would affect y keeping the confounders fixed ?
@oliveiralgm
@oliveiralgm 2 жыл бұрын
Propensity matching seems like a really complex and hard to get right model. How much does it get causality correctly and how do you know you can rely on this method?
@kellyyuan
@kellyyuan 3 жыл бұрын
Causal inference 很重要。。面试也会问。。谢谢分享~~。。能不能再讲一下confounding variable怎么处理~~
@linhe5896
@linhe5896 2 жыл бұрын
Awesome video as usual, and great timing as more companies find the limitation of A/B testing and look for alternatives. Just curious, in this video, regression and matching are two techniques that can be used either or, not something we need to combine together within the same study?
@arojitdas8256
@arojitdas8256 2 жыл бұрын
Really helpful.This actually helped me in of one my project.Also can you made videos on Linear Programming and Multibanded solution
@emma_ding
@emma_ding 2 жыл бұрын
Absolutely, I'm working on creating more content, stay tuned!
@Jaybearno
@Jaybearno 3 жыл бұрын
Fantastic interview. I have a question - PSM seems very similar to logistic regression. Is psm an extension of it?
@Sn-nw6zb
@Sn-nw6zb 3 жыл бұрын
Appreciate your content. How about Doubly Robust Estimation which combines both regression and propensity? I am curious which counter factual techniques you might talk about next? I liked reference blog which explains doordash's actual problem, but I don't think it may work for many use cases. I would really appreciate if you can reference all techniques different companies use for counter factual in practice. Also, I face similar problems while evaluating contextual bandit model offline and not 100% sure if IPS (Inverse Propensity Score ) would be good enough technique.
@geoffreyz5466
@geoffreyz5466 8 ай бұрын
2:11 4:50 7:55
@hasan-gn9fr
@hasan-gn9fr 3 жыл бұрын
Hey Emma, I don't know if it's just me, but the links in your promotional emails seem to be broken. Just wanted to let you know
@rafaelerwin
@rafaelerwin Жыл бұрын
I wonder if the explanation could be more well structured.... It's like jumping from one to another concept.... But the cases given are very insightful thank you
@jingxuan104
@jingxuan104 3 жыл бұрын
Question: Can I use the Propensity score matching technique in a regression model? I mean the "treatment" is a continuous variable?
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
VIP ACCESS
00:47
Natan por Aí
Рет қаралды 30 МЛН
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН
Causal Inference - EXPLAINED!
15:32
CodeEmporium
Рет қаралды 73 М.
Propensity scores: Everything you need to know in 5min
6:49
Michael Fralick
Рет қаралды 93 М.
14. Causal Inference, Part 1
1:18:43
MIT OpenCourseWare
Рет қаралды 143 М.
An intuitive introduction to Propensity Score Matching
17:06
Doug McKee
Рет қаралды 217 М.
Why Linear regression for Machine Learning?
3:59
IBM Technology
Рет қаралды 35 М.
Learn Machine Learning Like a GENIUS and Not Waste Time
15:03
Infinite Codes
Рет қаралды 383 М.