Retrieval Augmented Generation (RAG) overview and demo of a simple RAG prototype & chat interface

  Рет қаралды 349

Colin Wynd

Colin Wynd

Күн бұрын

RAG (Retrieval-Augmented Generation) is an advanced approach in natural language processing (NLP) that combines a retrieval module and a generation module to improve the quality and relevance of generated responses.
I explain briefly what RAG is and some technologies that can be used. I also show a very simple prototype of a RAG Chat interface on top of a PDF.
This demo (cuparfife.com ) contains:
Retrieval Module: This component retrieves relevant external information (e.g., documents, knowledge base entries) based on the user's query. It helps provide up-to-date and accurate context for the generation process.
Generation Module: Typically based on a language model (like GPT), this component takes the retrieved information and generates coherent and contextually appropriate responses or content.
Key Features:
Context-Enriched Responses: By using external data, RAG can answer questions more accurately, even for specialized or less common topics.
Scalability: It leverages vast external datasets or knowledge bases without requiring the generation model itself to store all the knowledge internally.
Flexibility: It can be fine-tuned or adapted for specific domains (e.g., large pdf's).

Пікірлер
Episode 6: Agile Transformation with Shawn Gorrell
52:04
Colin Wynd
Рет қаралды 160
Introduction to Text Embedding for RAG system
7:32
Guy Ernest
Рет қаралды 24
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН
This Is Why You're Stuck At $10,000 Per Month...
12:54
MGMT573 preWeek1 overview
15:00
Andrew Molnar
Рет қаралды 1
new technologies that will change the world
8:56
Techno Point
Рет қаралды 26
A tricky Harvard Exam Question | Nice Radical Math Problem.!!
8:08
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН