one of the most beautiful functions in mathematics
@kodtech2 жыл бұрын
is just a Polylogarithm function case....
@frankansari3457 Жыл бұрын
One of my favorite KZbin videos ever.
@Alexander-oh8ry4 ай бұрын
Wow, my condolences for your uninteresting life
@DeanNiemi-r1m Жыл бұрын
It is no coincidence we use t for both the imaginary part of the complex argument and a time variable. Reimann is inviting us to walk along the real 1/2 line to inspect the complex codomain values. Think of time as a cursor. Generally, nobody uses the variable t without it meaning time. This part is more advanced, but it can get confusing if later on we wish to use t as the codomain imaginary variable. Then a paradigm shift is in order.
@nunnyu5 ай бұрын
zip up riemanns pants when you are done bro
@Jon-mi8by Жыл бұрын
its almost like gravity of the function is changing
@frankansari34574 жыл бұрын
Would be nice to have t to be also shown (perhaps as growing bar seperately).
@MarkusShepherd4 жыл бұрын
Frank Ansari yes, I agree. This would pretty much be the same as plotting the argument and the image it maps to at the same time.
@JwalinBhatt Жыл бұрын
This is awesome, but I always wonder why do we approximate the prime counting function to begin with? Cant we have Riemann like approximation for a smooth curve which passes through the primes: 2,3,5,7,... but not in staircase fashion?
@lih3391 Жыл бұрын
Likely its difficult to come up with a function like that, it might just come less naturally from the math
@JwalinBhatt Жыл бұрын
@@lih3391 Could be, but there has to alteast be some attempt or perhaps a formal definition of the problem. Something like a Bohr-Mollerup theorem for primes. People could just try brute forcing or some searching algorithm (Eureqa software) in the space of functions to have some good guesses. There has to be atleast something in this direction, I wonder why I cant find anything.
@thatkindcoder75102 жыл бұрын
Engineers after checking the first 10 zeros to a 2 decimal place precision: "Seems true"
@mohamedabdelkareem94432 жыл бұрын
xD
@GabriTell Жыл бұрын
xdd
@willyou21997 жыл бұрын
at the start z(0).. did you mean z(1/2+0i) ? because z(1/2)= -1.46......, and z(0)= -1/2
@MarkusShepherd7 жыл бұрын
Yes, you are right, my mistake. :-( Unfortunately, youtube doesn't let me edit those any more, so we'll be stuck with that error...
@GorjeCeleb6 жыл бұрын
hello
@rainbowbloom5754 жыл бұрын
How are the zeroes of the function related to prime numbers?
@MarkusShepherd4 жыл бұрын
Cristina López well, that's a big question... I answered some of it in my blog, a good article to start would be this one: www.riemannhypothesis.info/2014/10/tossing-the-prime-coin/
@rainbowbloom5754 жыл бұрын
@@MarkusShepherd Many thanks xD, I will try to understand
@rainbowbloom5754 жыл бұрын
Also, what music plays in the background?
@MarkusShepherd4 жыл бұрын
@@rainbowbloom575 I actually don't know. It is one of KZbin's free music that I just chose from their list, but by now so much has changed in their interface that I cannot find the name anymore...
@someguy40033 жыл бұрын
Beautiful
@DivineRedwood2 жыл бұрын
*True or false - every time the graph "hits" the origin (0,0) a "prime number" is shown to exist.*
@denysvlasenko18652 жыл бұрын
Incorrect...
@omerd602 Жыл бұрын
False - there's much more nuance to it than that, although the values of the zeros do help in determining the locations of primes
Seen these loops before but nobody explains how they come from the RZ function.
@MarkusShepherd Жыл бұрын
Does this article help? www.riemannhypothesis.info/2016/04/visualising-the-riemann-hypothesis/
@rayubinger9780 Жыл бұрын
@@MarkusShepherd Yes, thanks! "These are the values of \zeta(s)ζ(s) as ss goes up the critical line s=\frac12+tis=21+ti. We start at1 t=0t=0 at the beginning of the video and go all the way up to t=200t=200. \zeta(1/2)\approx-1.4603545\ldotsζ(1/2)≈−1.4603545…, so this is where the values start." Perfectly clear now! But now, unsure why bother? We already know the critical line has an infinitude of zeroes.
@mechwarreir28 жыл бұрын
is there any symmetry to this pattern or is it completely random? I would think its random since the zeta function is composed of an infinite product of primes.
@MarkusShepherd8 жыл бұрын
The zeta function itself is highly symmetrical - it has two axes of symmetry, Re z = 1/2 and the x-axis. This means you could have the mirrored spiral going "south" along the critical line. Otherwise we're still trying to understand the pattern of the zeros and why they all line up on Re z = 1/2... ;-)
@mechwarreir28 жыл бұрын
I meant symmetries in polar form. Also I don't think Re(z) = 1/2 is a symmetric axis since there are countably infinite zeros on the analytical continuation to Re(z) < 0 but no zeros right of Re(z) =1/2. As for polar form, I've never seen a more chaotic analytical spiral. Being a hypertrancendental function, you cannot express the zeta function as a solution to a differential equation, otherwise you should be able to use a fourier transform to derive all symmetries and solve the Riemann hypothesis.
@sarithasaritha.t.r147 Жыл бұрын
There is always, always a pattern to everything
@brandonfox96189 ай бұрын
@@MarkusShepherdThey’re not just zeros. They’re “non-trivial” zeros!
@Jeff-zc6rr7 ай бұрын
too bad this isn't the riemann zeta function. This is the analytical continuation of the zeta function, or what we call the functional equation., If you try to put the zeros of the riemann zeta function into the actual riemann zeta function it does not go to zero.
@SidneySilvaCarnavaleney3 жыл бұрын
¿Qué impacto causaría si afirmo que he encontrado el número primo más grande y más pequeño encontrado en todo momento, ya que la "Hipótesis de Rielman ha perdido toda su fuerza, ya que afirmo que algunos números no son primos"? Estimado noble amigo de este sencillo canal, con mi respeto a los profesores, alumnos y amigos de este sencillo canal, les reportaré algo muy intrigante sobre estos números primos, con un simple PA (Progresión Aritmética), puedo decir con total veracidad, demostrando científica y matemáticamente que los números que citaré a continuación no son primos, y los primos gemelos no existen: 2; 19; 41; 59; 61; 79; 101; 139; 179; 181; 199; 239; 241; 281; 359; 401; 419; 421; 439; 461; 479; 499; 521; 541; 599; 601; 619; 641; 659; 661; 701; 719; 739; 761; 821; 839; 859; 881; 919; 941; 1019; 1021; 1039; 1061; 1181; 1201; 1259; 1279; 1301; 1319; 1321; 1361; 1381; 1399; 1439; 1459; 1481; 1499; 1559; 1579; 1601; 1619; 1621; 1699; 1721; 1741; 1759; 1801; 1861; 1879; 1901; 1979; ¿Y cómo sería la hipótesis de Rieman, si estos no son primos? Al tratarse de un descubrimiento innovador en el Universo de las Matemáticas, los enunciados de épocas pasadas quedan nulas, dice el autor de la obra "Un atrevimiento del pi ser racional", Sr. Sidney Silva. Dentro de mi obra "La audacia de π para ser racional", demostrando Matemática y Científicamente que es un número Racional e Irreversible con una fracción de números enteros.
@ゾカリクゾ2 жыл бұрын
??? This looks AI generated
@MatveiPB83 жыл бұрын
Cursos de la Corporación Andina del Fomento en Economía, Edtoy subiendo el curso 0 para el programa del CAF
@drakanDS2 жыл бұрын
music?
@mihaleben60514 ай бұрын
>looks at graph >crosses zero multiple times So uh...
@momomomomomo8427 жыл бұрын
I can't comprehend clearly 'cause the first variable 0 is not on the critical line.
@HL-iw1du5 жыл бұрын
I think this video has the real part of the input of the zeta function fixed at 1/2 and the imaginary part of the input increasing as time goes on. The video displays both the real part and the imaginary part of the output of the function corresponding to the input at any given time.
@ffhashimi8 жыл бұрын
This is really amazing; and it's very useful ..I can't understand the process from the script so I have some questions : I understood from your post that you add time as variable to the 1/2+yi 1- why did you start with value 1.460.. 2- did that mean you used the first 200 zita zeros? will you explain more how did you create this great animation? and thanks for this animation
@MarkusShepherd8 жыл бұрын
The script essentially calculates the values of zeta for 1/2+0i, 1/2+0.1i, 1/2+0.2i, ..., 1/2+14i, ..., 1/2+200i. At each time step this new value will be plotted while the old values "fade". Hope that helps!
@Meuszik8 жыл бұрын
how did you create an animation like this?
@MarkusShepherd8 жыл бұрын
Sage. I wrote a few comments on the video here: www.riemannhypothesis.info/2016/04/visualising-the-riemann-hypothesis/ it also has a link to the script :-)
@jennyone8829 Жыл бұрын
🎈
@paulthompson96687 жыл бұрын
Markus, watching the spiral makes me sick to my stomach. There's just something gross about it, like playing poker with people who don't know how to fold, and ending up losing every once in a while to hands that no one in their right minds would play after a high pre-flop bet.
@MarkusShepherd7 жыл бұрын
Paul Thompson you're welcome!
@paulthompson96687 жыл бұрын
Haha Markus. Now I wonder if it would be possible for you to do an animation of the Riemann Zeta function as the values go up all the lines (simultaneously) between 0 and 1. Would we see an interesting paintbrush- like spiral, or would it be complete chaos?
@MarkusShepherd7 жыл бұрын
It would certainly be possible and probably not that difficult - I might try it one of these days, or you could try too if you want to get your hands dirty on the Sage code I posted here: www.riemannhypothesis.info/2016/04/visualising-the-riemann-hypothesis/ Using "all the lines" would probably too much to see anything, but with the right selection I'm sure it'd be very interesting!
@paulthompson96687 жыл бұрын
I haven't programmed in Sage before. Is it possible to add comments to the code? If so, could you put in comments in the appropriate places to let me know where I would have to add code to make it do the animation I asked about? I imagine we would need a nested for-loop.
@stephankuerner3157 жыл бұрын
I cracked it you lie completely wrong
@MarkusShepherd7 жыл бұрын
Sorry, what's there to crack and who is wrong where?
@MarkusShepherd7 жыл бұрын
Sure...
@stephankuerner3157 жыл бұрын
Sure ... yes - the Dax or the Lotto can be easily calculated and this shows that it is fraud. Because it is to be proved by this - it can not be found (I believe)