Indeed the best explanation I have come across so far on this topic!! Precise, clear and easily understandable by anyone!! Perhaps, you could add a few examples where the integrals are calculated under both the methods and where only Lebesgue integral is calculated for some higher dimensional domain. Thanks and regards
@jukkejukke53862 жыл бұрын
Danke Julian. Bestes Video zum Thema auf KZbin was das Big Picture erklärt. Das mit dem Höherdimensionalen wird nie am Anfang erklärt sondern die zu abstrakte rational-reelle 0, 1 Funktion.
@homosapien56842 жыл бұрын
Okay this is spooky. Just when i am having trouble with a topic, you release a video of it.
@DanielSilva-gc4xz8 ай бұрын
If you're posting bright and dark versions of the same video then you could have a channel called "The Dark Side of Mathematics" lol
@brightsideofmaths8 ай бұрын
Yes :D
@yodas67988 ай бұрын
amazing video, helped me so much!
@brightsideofmaths8 ай бұрын
Nice :) I am really glad about that!
@mastershooter642 жыл бұрын
I feel like you can write a python script that automatically takes all the videos, makes their background black then uploads them to youtube :)
@brightsideofmaths2 жыл бұрын
Indeed!
@scollyer.tuition Жыл бұрын
Very nice overview. Although a measure is defined on a sigma algebra, am I right in thinking that the pre-images on the x-axis generated by an arbitrary partition of the y-axis cannot, in fact, produce a sigma algebra? It seems that in this case at least we could construct the theory using a smaller structure than a sigma algebra - or am I confused here?
@brightsideofmaths Жыл бұрын
You could work with less structure in some contexts. However, you can watch my measure theory videos to see why sigma algebras are so useful here.
@dr.hanyeldeeb42594 ай бұрын
I want to obtain pdf lectures of KZbin videos on measure theory and complex analysis is it possible to send it to me?
@brightsideofmaths4 ай бұрын
Yes, you can get them as a Steady supporter! tbsom.de/s/subscribe
@yongmrchen4 ай бұрын
Can I say that Lebesgue integral is a generalization of Riemann integral and the latter is a special case of the former? The reason that we don’t need measure theory for Riemann is because the partition of X is a valid measure by itself.
@brightsideofmaths4 ай бұрын
The Lebesgue integral is different than the Riemann integral but the Lebesgue integral covers all Riemann integrable functions and gives the same value to them.
@yongmrchen4 ай бұрын
@@brightsideofmaths Thank you for the explanation 🙏
@brightsideofmaths4 ай бұрын
@@yongmrchen Thanks for your support!
@meteor8076 Жыл бұрын
So in order to work with Lebesgue integral we need to know measure theory ??
@brightsideofmaths Жыл бұрын
Yes :)
@Profejuanca2 жыл бұрын
Amazing
@DrMcCrady2 жыл бұрын
Do you have any advice about growing your KZbin channel?
@brightsideofmaths2 жыл бұрын
No, not really :D
@colinjohnson80442 жыл бұрын
Your example around 9:00, is that not just the Darboux Integral? Love the dark formats btw :)