Great job Ritvik. Seriously, you explain data science concepts EXTREMELY well.
@ritvikmath4 жыл бұрын
Thanks a ton Gary!
@home73223 жыл бұрын
@@ritvikmath you helped me with understanding a journal paper that I was reading. The python coding is so helpful for me as a beginner in this domain. I can easily analyse my data as soon as possible. Your are a superb teacher. I do appreciate your work.
@kevineotieno510 ай бұрын
Bro, you are not only a great data scientist, but also a great teacher.
@omranhasan82873 жыл бұрын
do you know how many papers I have read to understand those concepts and I couldn't, and here you come and made me not only understand them but be able to apply them is my thesis. thanks a lot.
@aakuthotaharibabu82442 жыл бұрын
after watching your videos it makes more sense that Data science is much about understanding Math's then after that we need to focus on coding part... awesome intrusion. thanks a lot
@vadimkorontsevich10662 жыл бұрын
you are the only one Indian lecturer and only the one econometrist, who I can understand with my bad english and my bed math background.
@arjunnvaja83612 жыл бұрын
thank you!! I don;t know why professors in highly ranked university can not teach us like this. hats off!!
@samuelthomaz3 жыл бұрын
Man, I'm learning time series analysis and forecasting and you're helping me a lot !!! Thanks !!!!
@ritvikmath3 жыл бұрын
Great to hear!
@niaz93912 жыл бұрын
bro, your explanations are really smooth and easy to understand......
@karatugba5 күн бұрын
most clear explanation ever, thanks a lot!
@ritvikmath4 күн бұрын
Thanks! Glad it was helpful!
@ssaaajdijj3 жыл бұрын
A simple explanation to understand AIC and BIC indeed. Thanks for that ritvik ! Can you please make a similar video to which gives a feel for, 1. log-likelihood. 2. significance of each evaluation parameters in different time series models.
@ritvikmath3 жыл бұрын
thanks! please check out my max likelihood video here: kzbin.info/www/bejne/jICsmaatpquKjMU
@abdullahalmoabadi31524 жыл бұрын
Thank you man, I was waiting for this video. If you can make another video which explains AIC & BIC in details that would be extremely helpful.
@ritvikmath4 жыл бұрын
Noted! Thanks :)
@klelck Жыл бұрын
Hey King, you dropped this 👑
@samyuktag4842 Жыл бұрын
I love you for teaching it so simply
@NickKravitz4 жыл бұрын
My professor at NYU co-wrote a paper on developing the AICc (corrected AIC). Of course Bayes has better name recognition in stats. Great video as always!
@aleksandrserebryanskiy72532 жыл бұрын
What a nice explanation! Was looking for that for so long.
@luizscheuer6704 жыл бұрын
this video couldn't have been posted at a better moment. Currently writing my thesis on Uber travel times modelling and can't figure out which model to select. pls marry me no homo.
@ritvikmath4 жыл бұрын
glad to help :)
@riteshsingh8113 жыл бұрын
In India, we respect our teachers, elders by touching their feets and ask for their blessings. I feel like giving the same respect to you. Love from India ❤️
@bhavasindhuАй бұрын
precise and elegant. ! thanks for sharing
@Sparzzzzzzzzzzz11 ай бұрын
underrated af! thanks man
@alexgeiger-h8z Жыл бұрын
Nice job getting to the point!
@ritvikmath Жыл бұрын
Glad it was helpful!
@jonasschroder72442 жыл бұрын
Great explanation
@davidmacneill9686 Жыл бұрын
Thank you, great stuff!
@user-or7ji5hv8y4 жыл бұрын
Great explanation.
@ritvikmath4 жыл бұрын
Glad it was helpful!
@samuraibhai0074 жыл бұрын
Thank you so much Ritvik. Out of curiosity: as it pertains to time series, will you be covering Brownian motion and jump diffusions in future videos? Regardless - love your content!
@ritvikmath4 жыл бұрын
Thanks! And I will definitely look into those topics
@cleansquirrel20844 жыл бұрын
Again! Amazing!
@irishryano4 жыл бұрын
Great video! Very helpful and thorough explanation. For BIC, why do we want a lower number of samples? Conceptually, I thought more data points makes a better model. Can’t wait to catch up on rest of your videos I have not seen yet Cheers!!
@fpvfun6764 жыл бұрын
Yes, we want more samples in general, but they have to contribute to better fit (increasing log likelihood) more than log of number of samples in order to be "BIC" better. As mentioned in the video if you have two models with same log likelihood, obviously the one trained on 1k samples is better than the one trained on 1M samples (and getting the same loglikelihood).
@vivekkaushik18493 жыл бұрын
Can there be a case where we have different model for AIC and BIC?. For instance, AR(6) gives the lowest AIC and AR(10) gives the lowest BIC. In this case which model will be taken into consider and why?
@pedrocolangelo58442 жыл бұрын
I'd be so glad if ritvikmath answers this question. This is exactly what I was thinking about.
@VictorOrdu2 жыл бұрын
Fantastic!
@viktoriiat.44033 жыл бұрын
Hey, Ritvik! Thank you for the great content! Could you, please, make a video on State Space Models?
@MrTjurk4 жыл бұрын
Thank you very much!
@ritvikmath3 жыл бұрын
You're welcome!
@admissionmoist54983 жыл бұрын
Why is AIC 2K-2L and not just K-L?
@victorbotelho36094 жыл бұрын
Ritvik, since all models used the exact same amount of data points in the sample, the model with the lowest AIC would also be the model with the lowest BIC, correct? Does that mean that only the AIC is relevant when all models have the same amount of sample data?
@jjaviergalvez3 жыл бұрын
I have the same question.
@prashantkumar-ue7up4 жыл бұрын
Great video.When should we use adjusted R square,AIB and BIC?
@shiwahashimi43262 жыл бұрын
Thank you!
@luizscheuer6704 жыл бұрын
On question, though: what should I interpret out of the AIC if I apply it to just my stationary time series (i.e. 1st diff of the original time series) ? That is, with no AR, MA or other models yet applied to it? Would it make any sense?
@ritvikmath4 жыл бұрын
good question. AIC/BIC are metrics we use on *models* not on raw data itself. So use these metrics if you are trying to decide between many models on the same set of data.
@paweszafaowicz69594 жыл бұрын
Hi! Very usefull video. What about if you make a video about this log likelihood. It seems not so intuitive and there is no much of material about this topic out there. Thanks!
@ritvikmath4 жыл бұрын
Great suggestion! I've added it to my list :)
@farnazmarianoshokrifard84462 жыл бұрын
Thanks a lot. So I have repeated measures and my models are nested. Would you then recommend BIC? I appreciate your help :)
@al38261 Жыл бұрын
Great!
@tjbwhitehea13 жыл бұрын
If the purpose of the modelling is to perform predictions, is it not better to evaluate the model on its ability to make predictions (i.e. with sliding windows k fold cross validation)? Rather than appraising the model on it's fit on data that it has already seen
@Johnnyonthespot223 жыл бұрын
could you do some of these in Rstudio?
@jusjosef11 ай бұрын
Why is AR(10) chosen when AR(7) and AR(8) had more significant lags?
@mahdiziane5753 жыл бұрын
hi there @ritvikmath I WANT To confirm onething, about the AIC formula, isen't ''AIC=2K-2ln(L)'' the correct one instead of AIC=2K-2L. THANK YOU.
@vuhoangdung2 жыл бұрын
what AIC and BIC stand for?
@roshedulalamraju79364 жыл бұрын
how you say the data is stationary when p value is zero? when p value is less than the value of 95% con int then we reject null hypothesis. so the data is not stationary
@siamakfarjami21164 жыл бұрын
your null hypothesis would be the data is non-stationary, so if the p-value is less than 0.05 (5%), it means the null hypothesis is rejected and the data is stationary, so as here p-value is less than 5% , (zero) here then the data is stationary.
@algerianman64173 жыл бұрын
plz the book you used making those videos
@philipphabicht4974 жыл бұрын
Please do a more theoretical video about log likelihood
@tanvitolat90453 жыл бұрын
sir please explain ARCH GARCH model Assumption and limitation
@farooq8fox3 жыл бұрын
epic
@colmanwong90602 жыл бұрын
If they want to obtain the lowest of AIC, why don’t they represent the formula as k/l , they would give similar relationship
@s.prakash78693 жыл бұрын
Naice!!
@tuguldurganbaatar48492 жыл бұрын
NotImplementedError: statsmodels.tsa.arima_model.ARMA and statsmodels.tsa.arima_model.ARIMA have been removed in favor of statsmodels.tsa.arima.model.ARIMA (note the . between arima and model) and statsmodels.tsa.SARIMAX. statsmodels.tsa.arima.model.ARIMA makes use of the statespace framework and is both well tested and maintained. It also offers alternative specialized parameter estimators. it says