The value that you put out for free is INCREDIBLY appreciated. You are seriously helping so many students and professionals through your videos. Thank you so much on behalf of all of us.
@thefuzedout2 жыл бұрын
I don't think I've ever commented on an educational video in my 22 years cause I'm always left with a doubt at the end, but this video genuinely helped me understand the terms in detail! Thank you ritvik
@rudeprover6 ай бұрын
As always Ritvik never disappoints when it comes to breaking down a concept without relying on mathematical equations, and still giving the best overview of a concept in the most generalized way possible. Thank you!
@thepresistence5935 Жыл бұрын
This is the only video, I learnt about bias-variance tradeoff
@souravkundu17355 ай бұрын
i have been searching for this topic all over the internet... but i have always got very complex explanations... youyr explanation finally saved the day. Thanks !
@jannatulferdaush3772 жыл бұрын
The best video on internet about Bias Variance. Since I am interested in machine learning, I have watched hundreds of video on this topic, but haven't understood much. But your video made it easy for me. You saved my life. Thanks a lot man. I pray for your good health & wealth
@shubhamsharma-ne2ke3 жыл бұрын
"Obviously", this is the best explanation of bias and variance.
@liamtarr4 жыл бұрын
I really enjoyed this explanation. This is a must watch for anyone who wants to start working with machine learning.
@ritvikmath4 жыл бұрын
Glad you enjoyed it!
@telugujack55624 жыл бұрын
1200 long page book on Practical and real world scenario based book on data science and machine learning. Download sample pages from the below product page. #Datascience #machinelearning #python #interview #interviewquestions Check out my latest product: DataScienceMachineLearningQuestionBank A well curated and catalogued practical based data science and machine learning questions and solutions.A must for all those aspiring and practising data scientists and ML engineers to deepen your... payhip.com
@nicowww893 жыл бұрын
I think you nailed it by clearly showing how model prediction vary based on the training data. Most bias-variance explanations out there never really make it clear that you're looking at the same model trained on different data Great job!
@stanlukash333 жыл бұрын
And here I am - coming back to your videos even after finishing an ML course. Thank you
@subhankarghosh123310 ай бұрын
You are AWESOME... The fun part is, I grasped this concept earlier from some text but when I was reading some other resources about some other topics they also brought up the bias variance. From those explanations, I got completely confused and started to doubt my understanding itself. Thanks for your effort. It really helped me bring back my confidence.
@ritvikmath10 ай бұрын
Glad it was helpful!
@AdityaSharma-do1ho3 жыл бұрын
Hey Ritvik, I like the way you try to build up the intuitive sense around maths rather than focusing on the theorems! Great work!
@danspeed932 жыл бұрын
One of the clearest explanations of this tradeoff I've seen so far, thanks!
@DigitalOutlawed5 ай бұрын
Man, Thanks so so so so much, you have no idea how much time you save us students.
@honeyBadger5824 жыл бұрын
One of the best DS tutors out there. Keep it up!
@ritvikmath4 жыл бұрын
Glad you think so!
@mateoricucci12854 жыл бұрын
This is the best youtube video I've ever seen. Thank you so much
@ritvikmath3 жыл бұрын
Wow, thanks!
@sarfrazjaved3303 жыл бұрын
Hey @ritvikmath, This man is genius. He explains the complex stuffs so simple. Hats off sir.
@Boringpenguin2 жыл бұрын
Thank you so much. This is by far the clearest explanation I have ever come across on this topic!
@ArunKumar-yb2jn3 жыл бұрын
A wealth of wisdom in a nugget!
@monazaizan947 Жыл бұрын
Wow!! Very well explained!! I appreciated your effort. It is not easy to put all these together perfectly! Thank you so much!
@HonestConsulting4 жыл бұрын
Hey bro. You make excellent videos. Keep up the good work.
@ritvikmath4 жыл бұрын
Thank you so much 😀
@rahulahuja14123 жыл бұрын
The pen-toss - finger-snap combo at the end was fun. 😄 Truly appreciate this succinct summary of the concept; served as a wonderful refresher. Saving this in a revision playlist.
@Moongchilove Жыл бұрын
Appreciate the video. What a intuitive, straight-to-the point lecture in a perfect play time
@aniket19833 жыл бұрын
Thank you so much....this was one of the best explanation of variance- bias...again Thank you so much for all your videos...Respect...
@ataulmorshed39643 жыл бұрын
The wow part was the explanation on contribution of each model to learn the average 'signal' (true pattern) and 'noise' of a data.
@dharmharley68713 жыл бұрын
Pleasantly surprised to see this good of content on youtube!
@yakovsushenok3 жыл бұрын
Simply explained is best for intuition
@houyao21473 жыл бұрын
very clear about the definitions of variance and bias. It tells sth. about many models, not one.
@augustoc.romero11303 жыл бұрын
Write a book about simply explained data science. You're great at explaining things intuitively and am sure you'll have a market for such a thing. Thanks for your vids bro.
@kushagraagrawal72923 жыл бұрын
FFS my university is filled with world famous research professors that dont know how to teach and couldnt explain this concept in hours of lecture :( thank you so much!
@woowooNeedsFaith4 жыл бұрын
Subtitles of this video are rally nice. Without it I wouldn't known you speak Korean.
@jackvaughan7265 Жыл бұрын
Made this crystal clear. Thank you for this content
@ramiscanyakar50782 жыл бұрын
amazing video pure informations well done thanks ritvik
@jayneabrown2 жыл бұрын
You are an absolutely incredible teacher!
@cara13623 жыл бұрын
Just wanted to say thank you. All of your videos I have watched are pretty understandable. I'm reviewing those terminology concepts and prepare my coming interview. If it's possible, I'm looking forward to seeing your video about L1 and L2 explanation or the overfitting solution.
@harrywilkinson48262 жыл бұрын
This was a fantastic explanation. Thanks for the clarity!
@derekfun754 жыл бұрын
wow. You are so good! You really help me understand the concept completely!
@ritvikmath4 жыл бұрын
I'm so glad!
@arkophredy2 жыл бұрын
The explanation was super!!! Thanks for sharing this
@zrinkaduvnjak80374 ай бұрын
Hi, I'm a pharmacist by training and at the moment doing a PhD in the field of pharmacometrics. I love your videos! It is just amazing that you are able to explain them to someone without a proper math or statistics background. In my field we are using quite a few data science concepts but in quite different (but at the same time similar) ways. I thought this video could be a great opportunity to share this with you (so you would keep explaining everything in such a simple way). In pharmacometrics, we are working with clinical trials data and developing nonlinear mixed-effects models to explain changes in concentrations of drugs in the human body over time (we have multiple drug concentration measurements over time, together with patient characteristics available). Our models are sets of ordinary differential equations and most of the parameters in these models are treated as random effects parameters (we can not pool all the samples from all the patients together, but need to account for samples belonging to the same individual, and that patients differ from one from another). Bias-variance tradeoff comes in place in the last stage of model development (after general trends were accounted for with the system of ODEs), when we are trying to find covariates on model parameters (some patient characteristics, such as age, or some blood measurement). In contrast to your field, we do not have multiple sample datasets available (splitting is not an option since the dataset size is rather small) and it usually takes years after we publish our models that somebody actually tries to validate them on external data. We opt for complex models that contain all possible covariates when we want to make inferences on covariate effects, or more precisely - when we want to prove that dose adjustment is not needed (when we want to estimate these negligible parameters), but we opt for a parsimonious model when we want to use it for simulations (other clinical trials, same special populations such as obese people etc.). Also when we are talking about bias in oversimplified models, I believe in the first place we mean that over parameter estimates (and not predictions) are biased, since if we do not include 2 covariates, but only 1, and the two are correlated, estimate of one will also account for not including the second one (estimated effects seems to be higher than it is). After watching your video I finally understand why we are saying that simpler models are more predictive. Thank you!
@keremaksoy80072 жыл бұрын
Dude, u are a perfect teacher
@mprawesh Жыл бұрын
My course book definition was so confusing but you made it so clear. Thank You!
@ritvikmath Жыл бұрын
Of course!
@tymothylim65503 жыл бұрын
Wonderful video! Never really understood these terms when studying until now :) Thanks a lot!
@amyliu2777 Жыл бұрын
This makes so much sense! Thank you for the awesome explanation.
@anjamisimovic9214 Жыл бұрын
you are just GREAT dude... you explained it sooooooo nicely i cant believe
@justin.c2492 жыл бұрын
Very well explained! Great work!
@omarz8390 Жыл бұрын
excellent presentation for boas and variance. Thank you
@王十八-k6w2 жыл бұрын
Best explanation on this topic! Thank you!
@navanarun Жыл бұрын
Thanks for simplifying such a complex topic!
@DrNoureddinSadawi2 жыл бұрын
Great explanation Ritvik, thank you!
@GeoffryGifari8 ай бұрын
So should we strive to optimize the _product_ of bias and variance?
@ICEICISIC2 жыл бұрын
Few variables, consistent prediction across datasets, average prediction does not get closer to true value. Many variables, inconsistent prediction across datasets (as predictor function models the idiosyncratic noise in the data - leading to high variance in predictions or prediction decisions) , average prediction gets closer to true value (as noise from individual datasets cancel each other - leading to low bias or error between the average across predictions and the true value).
@sameerpatel47313 жыл бұрын
Excellent explanation - thank you for this video
@ritvikmath3 жыл бұрын
Glad it was helpful!
@chuckyneoable2 жыл бұрын
Awesome explanation. Sincere thanks
@DarkShadow-tm2dk4 жыл бұрын
Bagging and Boosting ❤️ Can u please part 2 for this video with mathematics bcoz you really are good at explaining complex things I understood pca fully bcoz of u
@andreyb74193 жыл бұрын
Love such an easily explained complex stuff! Thx a lot!!!
@ShakrinJahanMozumder3 ай бұрын
Can't thank you more! You're amazing, man!
@ritvikmath3 ай бұрын
Happy to help!
@ryansandan78972 жыл бұрын
this is the best explanation!
@AriaHarmony2 жыл бұрын
Thank you very much this's exactly what I needed.
@mosama223 жыл бұрын
One more GREAT video, really don't know what to say man, thank you :-)
@estagidados3022 жыл бұрын
great explanation. thank you, master
@r.walid2323 Жыл бұрын
Thank you, what a great explanation
@699ashi4 жыл бұрын
Yes, I did intuitively understood the concept. Thanks
@xavecoding3 жыл бұрын
Amazing explanation... tkx a lot
@mango-strawberry8 ай бұрын
wow. perfectly explained. holy moly
@jwdex3 жыл бұрын
Thank you so much! Great explanations, wish I would've watched this sooner
@Werdnabae2 жыл бұрын
love the marker flip at 5:39 LOL
@zephyrsurfteam4 жыл бұрын
Well said! Keep up the good work.
@ritvikmath4 жыл бұрын
Thanks, will do!
@jakubjan44 Жыл бұрын
Really good explanation
@smilingbread224 жыл бұрын
I like how u explain it, can u make videos about LASSO, SCAD and MCP, I still confused about them..
@ritvikmath4 жыл бұрын
I do have a LASSO video: kzbin.info/www/bejne/oJPahHatpLloZ68 And thanks for the other suggestions!
@soajack3 жыл бұрын
Great explanation ! Thanks !
@ariellise2 жыл бұрын
very clean explanation
@user-or7ji5hv8y3 жыл бұрын
Recommend future video suggestion: Fisher Information.
@arrozenescau1539 Жыл бұрын
wow you make it so easy to understand
@ritvikmath Жыл бұрын
Thanks!
@alexcessy3 жыл бұрын
Great explanation
@ritvikmath3 жыл бұрын
Glad it was helpful!
@SPeeDKiLL453 жыл бұрын
man so good explained really.
@sairabaig72724 жыл бұрын
Sir great explanation, plz make videos on statistical inference
@hiteshthakur416 Жыл бұрын
Being a researcher, I should say that when you defined the term bias, you should also explain what is variance else this isn’t for dummies.
@ebateru3 жыл бұрын
Great video man! Tnx a bunch!
@ritvikmath3 жыл бұрын
Glad it helped!
@mrbeancanman2 жыл бұрын
really great explaination thanks!
@ChocolateMilkCultLeader3 жыл бұрын
Fantastic explaination
@alejandrocanada2180 Жыл бұрын
what a great video, thank you very much
@P4ExHzLRuuiFMg3X4U3v2 жыл бұрын
Great presentation! You mentioned that complex models have a tendency to pick up both real patterns and noise from the dataset they are trained on, so their predictions are all different (high variance) due to the noise, but correct on average. I'm wondering, if you have a very large dataset, why isn't it viable to train the same very complex (strongly overfitted) model on N chunks of the dataset and use the average prediction of these N models?
@MNCAMANI153 жыл бұрын
This man is amazing.
@canernm4 жыл бұрын
Very good video. Thanks!
@ritvikmath4 жыл бұрын
Glad you liked it!
@diegososa52804 жыл бұрын
Thank you very much, as always spot on
@GeoffryGifari8 ай бұрын
High variance doesn't seem to bad... is the downside the lack of efficiency (computational cost too high for overly complex models)?
@peterc.23012 жыл бұрын
Absolutely Perfect!!!
@leonhardolaye-felix8811 Жыл бұрын
Amazing video
@karimmohanad2k0111 ай бұрын
Thanks for the effort!
@baurks Жыл бұрын
This is great. But what exactly is bias? I heard 2 different things, 1) it means how different the different models are in terms of their predictions, 2) how far their predictions are from their true values If I got it these right, definitely confusing. Could you please clarify? Thank you
@SergioPerez-wj1nz2 жыл бұрын
Great explanation. I hope you are a teacher somewhere.
@prathammehta42902 жыл бұрын
Well Explained!!
@yuckbutyup3 жыл бұрын
Thank you for the video, great job! But I have a question that based on my understanding, variance here should be the difference between prediction accuracy from different test data set. Please correct me if I am wrong. Thanks again for the video, love it.
@jierunchen873 Жыл бұрын
Nice tutorial. Suddenly at around the 8th min, the message behind the bias-variance just pop out!
@ritvikmath Жыл бұрын
Glad it helped!
@nidasiddiqui214 жыл бұрын
Hello..Can you please make some videos on Statistical Copulas-- Vine copulas. There is no good explanation around.
@janarthananpoornavel3 жыл бұрын
Thanks a lot ritvik
@ritvikmath3 жыл бұрын
You're welcome 😊
@gadmuhirwa5226 Жыл бұрын
does Variance same as Loss? bcz even in the formula seems the same = [sum(x-xhat)^2]/n @ all
@lsacy83472 жыл бұрын
how would an average of all the overtrained models look like? It would produce the right answer, does it mean the noises are somehow cancelled out?
@ramankutty12454 жыл бұрын
Very well explained. I love your videos, though you speak really fast!