Multi-Armed Bandit : Data Science Concepts

  Рет қаралды 98,376

ritvikmath

ritvikmath

Күн бұрын

Пікірлер: 150
@jc_777
@jc_777 2 жыл бұрын
enough exploration for good youtube lecture on ml. i should keep exploit this guy. 0 regret guaranteed :)
@Sad-mm8tm
@Sad-mm8tm 4 жыл бұрын
I hope you will continue making videos forever. Your explanations are the best I've ever seen anywhere + the wide choice of topics gives me food for thought when dealing with my own optimization problems.
@ritvikmath
@ritvikmath 4 жыл бұрын
Thank you :) I'm happy to help
@VahidOnTheMove
@VahidOnTheMove 2 жыл бұрын
If he makes videos forever, we'll get zero regrets.
@Xaka-waka
@Xaka-waka 11 ай бұрын
​@@ritvikmathdon't let this channel die man
@marcelobeckmann9552
@marcelobeckmann9552 3 жыл бұрын
Your explanations, didactics, and dynamism are amazing, way better than several university professors. Well done!
@faadi4536
@faadi4536 3 жыл бұрын
What an amazing explanation. I am taking a Machine Learning Course and he tried to explain the concept using Bandits but couldn't quite really grasp it in detail. I understood what we are trying to figure out but wasn't quite their yet. You have made it so much easier. Kudos to You Brother.
@bilalbayrakdar7100
@bilalbayrakdar7100 2 жыл бұрын
Bro I completed my CS degree with your help and now I got accepted for master and you are still here to help. You are a true man, thx mate
@savasozturk00
@savasozturk00 7 ай бұрын
After watching 5 videos, finally I found the best lecture teller for this topic. The examples are great, Thanks.
@111dogger
@111dogger 3 жыл бұрын
This is the best explanation I have come across so far for the Upper Bound Confidence concept. Thank you!
@itssosh
@itssosh 2 жыл бұрын
It would be great if you made a whole playlist where you explain the statistics for machine learning by explaining the formulas in an intuitive way like you do (you make me understand them all). For example, explain the various distributions and their meaning, statistical tests (p-value), etc. Thank you so much for the work you do and the knowledge you share!
@abdulsami5843
@abdulsami5843 3 жыл бұрын
A thing I absolutely like is how palatable you make these concepts, not too mathematical/theoratical and not overly simplified, just the right balance ( € - greedy is set right 😉)
@Dr.RegulaSrilakshmi
@Dr.RegulaSrilakshmi 9 ай бұрын
U r just awesome ,any person who doesn't have any knowledge of Reinforcement learning can understand,Keep up the spirit...cheers
@pranavlal2289
@pranavlal2289 Ай бұрын
Best explanation of MAB ever. Thanks
@AnasHawasli
@AnasHawasli 2 ай бұрын
Thank you so much for this simple explanation It was impossible for me to understand this concept without your video NOT EVERYONE SPENT HIS LIFE IN A CASINO I am not familiar with this armed bandit trash Here is a sub!
@malice112
@malice112 Жыл бұрын
What a great and easy to understand explanation of MAB - thank you for this!!!!
@shahnazmalik6553
@shahnazmalik6553 4 жыл бұрын
Your teaching method is highly appreciated. Please make lectures on statistics and machine learning algorithms
@softerseltzer
@softerseltzer 4 жыл бұрын
Love your videos, the quality just keeps going up! PS. the name of the slot machine is "One-armed bandit", because of the long arm-like lever that you pull to play.
@irishryano
@irishryano 4 жыл бұрын
....And the bandit bc it’s the WORST odds in every casino
@spicytuna08
@spicytuna08 2 жыл бұрын
i guess the slot machine is a bandit cause it keeps robbing money from the players.
@SURBHIGUPTA-o4w
@SURBHIGUPTA-o4w 6 ай бұрын
Thanks Ritvik! this is the best explanation I have come across so far!
@spicytuna08
@spicytuna08 2 жыл бұрын
we need to a person like you to democratize these important concepts cannot express how grateful i am to understand these important concepts which i have struggled in the past.
@heteromodal
@heteromodal 3 жыл бұрын
Great video, and it's really nice listening to you! Thank you :)
@maxencelaisne4141
@maxencelaisne4141 4 жыл бұрын
Thank you so much, I passed my exam thanks to your explanation :)
@ritvikmath
@ritvikmath 4 жыл бұрын
Glad it helped!
@hameddadgour
@hameddadgour 2 жыл бұрын
I just realized that I need to explore more to maximize my happiness. Thank you Multi-Amed Bandit :)
@adanulabidin
@adanulabidin 8 ай бұрын
What an amazing explanation! Thank you so much. Keep making such videos.
@llescarini
@llescarini 4 жыл бұрын
Subscribed since few days, your videos are more than excellent! Amazing skill for teaching, thanks a lot.
@ritvikmath
@ritvikmath 4 жыл бұрын
Awesome, thank you!
@CaioCarneloz
@CaioCarneloz 2 жыл бұрын
The way you explain is stunning, what a awesome lesson.
@jonathanarias2729
@jonathanarias2729 2 жыл бұрын
Why 330 is the response in the explotation example? Should t be; 3000-2396=604??
@khaalidmcmillan9260
@khaalidmcmillan9260 2 жыл бұрын
Well said, needed a refresher after not seeing this for a while and this nailed it. Hopefully you've gone into more advanced topics like MAB reinforcement learning
@bobo0612
@bobo0612 4 жыл бұрын
Hi! Thank you for your video. I have a question at 6:28. Why the roh is not simply 3000 - 2396?
@senyksia
@senyksia 4 жыл бұрын
2396 was the happiness for that specific case, where restaurant #2 was chosen to exploit. 330 is the (approximate) average regret for every case. So 3000 - 2396 would be correct if you were only talking about that unique case.
@myoobies
@myoobies 4 жыл бұрын
@@senyksia Hey, what do you mean by average regret for every case? I'm still having trouble wrapping my head around this step. Thanks!
@madmax2442
@madmax2442 3 жыл бұрын
@Bolin WU I know it's 8 months already but I wanted to know whether you got the answer or not. I also have the same doubt.
@vahidsohrabi94
@vahidsohrabi94 3 жыл бұрын
I'm grateful to you because of this great tutorial.
@gabrieldart9943
@gabrieldart9943 Жыл бұрын
This is so cool! Thanks for your clear explanation.
@nassehk
@nassehk 4 жыл бұрын
I am new to your channel. You have a talent in teaching my friend. I enjoy your content a lot. Thanks.
@ritvikmath
@ritvikmath 4 жыл бұрын
Thanks!
@traiancoza5214
@traiancoza5214 3 жыл бұрын
Perfectly explained. Genius.
@raphaeldayan
@raphaeldayan 3 жыл бұрын
Amazing explanation, very clear, thank you Sr
@anaydongre1226
@anaydongre1226 4 жыл бұрын
Thanks so much for explaining this in detail !!
@ritvikmath
@ritvikmath 4 жыл бұрын
You are so welcome!
@nintishia
@nintishia 3 жыл бұрын
Very clear explanation. Thanks for this video.
@sahanar8612
@sahanar8612 3 ай бұрын
Great Explanation!. Thank you 😊
@jinpark9871
@jinpark9871 4 жыл бұрын
Thanks, your work is really awesome.
@ritvikmath
@ritvikmath 4 жыл бұрын
Thank you too!
@soundcollective2240
@soundcollective2240 3 жыл бұрын
Thanks, it was quite useful, heading to your Thompson Sampling video :)
@DarkNinja-24
@DarkNinja-24 3 жыл бұрын
Wow, great example and amazing explanation!
@A.n.a.n.d.k.r.
@A.n.a.n.d.k.r. Жыл бұрын
Awesome cool technique just got hooked to this
@jroseme
@jroseme Жыл бұрын
This was a useful supplement to my read of Reinforcement Learning by Sutton & Barto. Thanks.
@ritvikmath
@ritvikmath Жыл бұрын
Glad it was helpful!
@krittaprottangkittikun7740
@krittaprottangkittikun7740 3 жыл бұрын
This is so clear to me. Thank you for making this video!
@rikki146
@rikki146 Жыл бұрын
i cannot thank you enough for makin this excellent vid!
@SDKIM0211
@SDKIM0211 2 жыл бұрын
Love your videos. To understand the average regret value for exploitation, which extra material should we refer to? Why not 604?
@prasadbbd
@prasadbbd Ай бұрын
love this video and explanation is very clear
@kunalkasodekar8562
@kunalkasodekar8562 5 ай бұрын
Perfect Explanation!
@nastya831
@nastya831 4 жыл бұрын
thanks man, this is truly helpful! 6 min at 2x and I got it all
@ritvikmath
@ritvikmath 4 жыл бұрын
Great to hear!
@hypebeastuchiha9229
@hypebeastuchiha9229 2 жыл бұрын
My exam is in 2 days and I'm so close to graduating with the highest grades. Thanks for your help!
@warreninganji7881
@warreninganji7881 4 жыл бұрын
crystal clear explanation worth a subscription for more👌
4 ай бұрын
Awesome! Thank you! You helped me a lot!
@dr.kingschultz
@dr.kingschultz 2 жыл бұрын
You are very good! Please explore more this topic. Also include the code and explain it
@aryankr
@aryankr Жыл бұрын
Thank you for a great explanation!!
@michaelvogt7787
@michaelvogt7787 6 ай бұрын
multi-armed bandit is a misnomer really... it should be multi-one-armed-bandit problem. slot machines were called one-armed bandits because they have a single arm that is pulled, and the odds of winning are stacked against the player making them bandits. the goal is not so much about finding out which to play, which would become more apparent given enough plays, but instead to determine which mix of N plays to spread out across the group, settling in on the best mix to achieve exploration in balance against exploiting the best returning bandit. i am a career research scientist pioneering in this field for 40 years... i am always reviewing videos to back-share with students and learners and YOURS have Returned the greatest value for my Exploration, and I will be Exploiting YOURs by sharing them the most with my students. its the best compliment i can think of. cheers. dr vogt ;- )
@amirnouripour5501
@amirnouripour5501 2 жыл бұрын
Thanks a lot. Very insightful!
@NoNTr1v1aL
@NoNTr1v1aL 3 жыл бұрын
Amazing video!
@yongnaguo8772
@yongnaguo8772 3 жыл бұрын
Thanks! Very good explanation!
@stanislavezhevski2877
@stanislavezhevski2877 4 жыл бұрын
Great explanation, can you leave a link to the code, which you used in simulations ?
@ritvikmath
@ritvikmath 4 жыл бұрын
Thanks! I have a follow up video on Multi-Armed Bandit coming out next week and the code will be linked in the description of that video. Stay tuned!
@fridmamedov270
@fridmamedov270 11 ай бұрын
Simple and accurate. That is it. Thanks!!!
@abogadorobot6094
@abogadorobot6094 3 жыл бұрын
WOW! That's was brilliant! Thank you!
@TheMuser
@TheMuser Жыл бұрын
I have explored and finally decided that I am going to exploit you! *Subscribed*
@dr.nalinfonseka7072
@dr.nalinfonseka7072 2 жыл бұрын
Excellent explanation!
@Status_Bleach
@Status_Bleach Жыл бұрын
Thanks for the vid boss. How exactly did you calculate the average rewards for the Exploit Only and Epsilon-Greedy strategies though?
@debashishbhattacharjee1112
@debashishbhattacharjee1112 Жыл бұрын
Hello Ritvik This was a very helpful video. You have explained a concept so simply. Hope you continue making such informative videos. Best wishes.
@ritvikmath
@ritvikmath Жыл бұрын
Thanks so much!
@francisliubin
@francisliubin Жыл бұрын
Thanks for the great explanation. What is the essential difference between contextual bandit (CB) problem vs multi-arm bandit (MB) problem? How does the difference impact the strategy?
@velocfudarks8488
@velocfudarks8488 3 жыл бұрын
Thanks a lot! Really good representation!
@rifatamanna7895
@rifatamanna7895 4 жыл бұрын
It was awesome technique 👍👍 thanks
@ritvikmath
@ritvikmath 4 жыл бұрын
thanks for your words!
@michaelvogt7787
@michaelvogt7787 6 ай бұрын
Nicely done.
@zahrashekarchi6139
@zahrashekarchi6139 2 жыл бұрын
Thanks a lot for this video! Just one thing I would like to find out here is where we store the result of our learning? like some policy or parameter to be updated?
@victorkreitton2268
@victorkreitton2268 2 жыл бұрын
What ML books do you recommend or use?
@rutgervanbasten2159
@rutgervanbasten2159 2 жыл бұрын
really nice job! thank you
@vijayjayaraman5990
@vijayjayaraman5990 6 ай бұрын
Very helpful. How is the regret 300 in the second case? Shouldn't it be 3000 - 2396 = 604?
@davidkopfer3259
@davidkopfer3259 4 жыл бұрын
Very nice explanation, thanks!
@ritvikmath
@ritvikmath 4 жыл бұрын
Glad it was helpful!
@seowmingwei9426
@seowmingwei9426 3 жыл бұрын
Well explained! Thank you!
@welidbenchouche
@welidbenchouche Жыл бұрын
This is more than enough for me
@TheFobJang
@TheFobJang Жыл бұрын
Would you say exploit only strategy is the same as the eplore-then-commit strategy (also know as explore-then-exploit)?
@bassamry
@bassamry Жыл бұрын
very clear and simple explaination!
@ritvikmath
@ritvikmath Жыл бұрын
Glad it was helpful!
@jams0101
@jams0101 4 жыл бұрын
awesome video ! thanks so much
@annahuo6694
@annahuo6694 3 жыл бұрын
Great videos ! Thanks for your clarification. It's much clearer for me now. But I just wonder how you calculate the 330 regret in the case of exploitation only ?
@ritvikmath
@ritvikmath 3 жыл бұрын
Good question. You can get that number by considering all possible cases of visiting each restaurant on the first three days. Something like, consider the probability that of the first three days of visits, what is the probability that restaurant 1 is best, vs. probability restaurant 2 is best, etc. You can do this via pencil and paper but I'd recommend writing a simple computer simulation instead.
@annahuo6694
@annahuo6694 3 жыл бұрын
@@ritvikmath Thank you for this prompt response. I think I get the idea from the epsilon greedy formula (option number 3 in the example). Thank you a lot, your video is really helpful :)
@alirezasamadi5804
@alirezasamadi5804 2 жыл бұрын
You explained so good
@josemuarnapoleon
@josemuarnapoleon 3 жыл бұрын
Nice explanation!
@georgiak7877
@georgiak7877 2 жыл бұрын
This is amazing !
@snehotoshbanerjee1938
@snehotoshbanerjee1938 8 ай бұрын
Best explanation!!
@ritvikmath
@ritvikmath 8 ай бұрын
Glad you think so!
@avadheshkumar1488
@avadheshkumar1488 3 жыл бұрын
excellent explanation!!! thanks
@sbn0671
@sbn0671 Жыл бұрын
Well explained!
@shahulrahman2516
@shahulrahman2516 7 ай бұрын
Great video
@yitongchen75
@yitongchen75 4 жыл бұрын
Cool explanation. Can you also talk about Upper Confidence Bound Algorithm relating to this?
@ritvikmath
@ritvikmath 4 жыл бұрын
Good timing! I have a video scheduled about UCB for Multi-Armed Bandit. It will come out in about a week :)
@뇌공학박박사
@뇌공학박박사 Жыл бұрын
Best example ever!!!
@TheMuser
@TheMuser Жыл бұрын
Nicely explained!
@yannelfersi3510
@yannelfersi3510 9 ай бұрын
can you share the calculation for the regret in case of exploitation only?
@wenzhang5879
@wenzhang5879 2 жыл бұрын
Could you explain the difference between the MAB problem and the ranking and selection problem? Thanks
@PhilipKirkbride
@PhilipKirkbride 4 жыл бұрын
Related to regret, we never really know the true distributions (since we can only infer from taking samples). Would you basically just use your estimated distributions at the end of the 300 days as the basis for calculating regret?
@joyo2122
@joyo2122 10 күн бұрын
can you explain why you need a random number generator?
@tariqrashid6748
@tariqrashid6748 3 жыл бұрын
Great explanation
@manabsaha5336
@manabsaha5336 3 жыл бұрын
Sir, video on softmax approach.
@quanghoang3801
@quanghoang3801 Жыл бұрын
Thanks! I really wish the RLBook authors could explain the k-armed bandit problem as clearly as you do, their writing is really confusing.
@sampadmohanty8573
@sampadmohanty8573 4 жыл бұрын
I knew everything from the start. Ate at the same place for 299 days and got pretty bored. So watched youtube and found this video. Now I am stuck at this same restaurant on the 300th day to minimize my regret. Such a paradox. Just kidding. Amazing explanation and example.
@newwaylw
@newwaylw 10 ай бұрын
Regret for your exploit only strategy should be 3000-2396=~604 no?
@thinkanime1
@thinkanime1 Жыл бұрын
Really good video
@ritvikmath
@ritvikmath Жыл бұрын
Thanks!
@qqabt24816
@qqabt24816 3 жыл бұрын
I love this vid! It would be great if you could also do more videos on online learning and regret minimization 😆😆😆
@shantanurouth6383
@shantanurouth6383 3 жыл бұрын
I could not understand how it turned out to be 330, could you explain please?
@sunIess
@sunIess 4 жыл бұрын
Assuming a finite horizon (known beforehand), aren't you (in expectation) better off doing all the exploration before starting to exploit?
@ritvikmath
@ritvikmath 4 жыл бұрын
You've just made a very good point. One strategy I did not note is an epsilon-greedy strategy where the probability of explore in the beginning is very high and then it goes to 0 over time. This would likely be a good idea.
@Trucmuch
@Trucmuch 4 жыл бұрын
Slot machines were not called bandit but one-arm bandit (they "stole" your money and the bulky box with one lever on its side kind of looked like a one-arm man. So the name of this problem is kind of a pun, a slot machine with more than one levers you can pull (here three) is a multi-armed bandit. ;-)
@ritvikmath
@ritvikmath 4 жыл бұрын
Wow I did not know that, thanks !!
Bayesian Linear Regression : Data Science Concepts
16:28
ritvikmath
Рет қаралды 87 М.
Best Multi-Armed Bandit Strategy? (feat: UCB Method)
14:13
ritvikmath
Рет қаралды 44 М.
小丑教训坏蛋 #小丑 #天使 #shorts
00:49
好人小丑
Рет қаралды 54 МЛН
coco在求救? #小丑 #天使 #shorts
00:29
好人小丑
Рет қаралды 120 МЛН
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
Multi-Armed Bandits: A Cartoon Introduction - DCBA #1
13:59
Academic Gamer
Рет қаралды 46 М.
Hidden Markov Model : Data Science Concepts
13:52
ritvikmath
Рет қаралды 135 М.
Collaborative Filtering : Data Science Concepts
12:03
ritvikmath
Рет қаралды 58 М.
Multi-Armed Bandits and A/B Testing
19:01
Jay Feng
Рет қаралды 6 М.
What the Heck is Bayesian Stats ?? : Data Science Basics
20:30
ritvikmath
Рет қаралды 70 М.
Multi Armed Bandits - Reinforcement Learning Explained!
10:33
CodeEmporium
Рет қаралды 12 М.
All Machine Learning algorithms explained in 17 min
16:30
Infinite Codes
Рет қаралды 495 М.
Thompson sampling, one armed bandits, and the Beta distribution
12:40
Serrano.Academy
Рет қаралды 24 М.
Random Forests : Data Science Concepts
15:56
ritvikmath
Рет қаралды 49 М.
The Sad Reality of Being a Data Scientist
8:55
Samson Afolabi
Рет қаралды 115 М.
小丑教训坏蛋 #小丑 #天使 #shorts
00:49
好人小丑
Рет қаралды 54 МЛН