Random Forests : Data Science Concepts

  Рет қаралды 50,031

ritvikmath

ritvikmath

Күн бұрын

Пікірлер: 91
@azarel7
@azarel7 3 жыл бұрын
Great video. 1) Spoke well and explained the concepts clearly 2) Threw and caught the marker every time, with no interruption in speech while doing so. Bravissimo!
@jpark7636
@jpark7636 4 жыл бұрын
This is the best video to understand random forest in KZbin so far for me :))
@saitaro
@saitaro 4 жыл бұрын
2-hour lecture in 15 minute. ritvik rocks.
@SPeeDKiLL45
@SPeeDKiLL45 3 жыл бұрын
i swear
@yuqingliu8412
@yuqingliu8412 2 жыл бұрын
I swear
@mikeshinoda2806
@mikeshinoda2806 11 ай бұрын
1 semester in 15 minutes :)
@MayankGoel447
@MayankGoel447 4 жыл бұрын
Thanks for the video! This is definitely the best explaination of Random Forest I have seen yet. I'm really enjoying learning Data Science from you
@ritvikmath
@ritvikmath 4 жыл бұрын
Awesome, thank you!
@george1122ification
@george1122ification 2 ай бұрын
love it ❤ Best explanation of random forest on youtube! thanks
@mosama22
@mosama22 3 жыл бұрын
I'm studying Data Science at MIT, you really can't imagine man how much "ritvikmath" is helping me, and a couple more channels, before I start any topic I like to tackle it first or just take a general idea, and you can't imagine how much your videos helped! Short, concise, and to the point! Thank you man 🙂 Just one notice, It might be a good idea to choose an easy to remember / clear channel name, sometimes when I'm talking to someone, it is almost impossible to remember the name of your channel, just a clear name with spaces! Thank you again 🙂
@smishra115
@smishra115 3 жыл бұрын
all hail the marker juggler and his short, crisp, easy to understand videos! Keep it up dude.
@BO2Letsplay
@BO2Letsplay Жыл бұрын
I'm trying to learn some ML content as it relates to classification to quite a large degree, and just want to say that this video on Random Forest is one of the only ones that actually made sense to me as a layman! Thank you
@jimlanzi6802
@jimlanzi6802 3 жыл бұрын
Very well organized and well put together. Simplified enough for the medium, but included just the right amount of detail to guide one in their further pursuits of the topic. Thank you.
@eyayawb
@eyayawb 4 ай бұрын
This is the best random forest explainer video I have come across. Thank you.
@ritvikmath
@ritvikmath 4 ай бұрын
Glad it was helpful!
@ashmitas
@ashmitas 9 ай бұрын
thanks, well explained to a beginner like me. appreciate how a complex method was easily explained using a basic whiteboard and a relatable example.
@qiguosun129
@qiguosun129 2 жыл бұрын
Great lecture, help me recall random forest when I am learning the causal forest
@edmundoguerramendoza7465
@edmundoguerramendoza7465 3 жыл бұрын
Ritvik, once again you do an amazing job simplifying concepts in short periods of time, while still making them very understandable. Thanks!!
@preetikharb8283
@preetikharb8283 3 жыл бұрын
This is THE BEST explanation of Random forest!! Thank you Ritvik :)
@SuperRia33
@SuperRia33 3 ай бұрын
Feature importance section was an eye opener 😮
@sourishguntipally8257
@sourishguntipally8257 Жыл бұрын
This was an amazing video and super well made. It's astonishing how this material is free to learn from!
@yuqingliu8412
@yuqingliu8412 2 жыл бұрын
My favorate and best teacher in KZbin !
@jarrelldunson
@jarrelldunson 4 жыл бұрын
Ritvik, hey, thank you... this was really, really helpful - a great explanation, Jarrell
@ritvikmath
@ritvikmath 4 жыл бұрын
Glad it was helpful!
@juliocjacobo
@juliocjacobo 3 жыл бұрын
Concise and right to the point, as always. Thank you!
@internetuser2399
@internetuser2399 3 жыл бұрын
this is some high quality content. you deserve more views! great teacher.
@Chillos100
@Chillos100 3 жыл бұрын
He’s simply the best!! Thanks for all your effort
@t_geek9211
@t_geek9211 4 жыл бұрын
Wow! You are really good at explaining stuff! That was amazing!
@ritvikmath
@ritvikmath 4 жыл бұрын
Glad you think so!
@danspeed93
@danspeed93 2 жыл бұрын
First time I see this way of computing feature importance, thanks!
@phungboston
@phungboston 2 жыл бұрын
Big Thanks for a clear explanation!!!
@storyteller1900
@storyteller1900 2 жыл бұрын
This is an amazing class. It contains all the important parts of random forests.
@haninalkabbani7766
@haninalkabbani7766 3 жыл бұрын
I can't describe how good your explanation is !!!
@ritvikmath
@ritvikmath 3 жыл бұрын
thanks!
@MafaldaTeixeira-
@MafaldaTeixeira- 2 ай бұрын
Great explanation! Thank you Ritvik!
@janpieterwagenaar1608
@janpieterwagenaar1608 4 жыл бұрын
Ritvikmath, i would like to complement you with the clear direct explanation video's. you make it easily accessable and clear with practical examples. please keep it up. Kind regards, Jan Pieter Wagenaar
@ritvikmath
@ritvikmath 4 жыл бұрын
You are most welcome!
@jasdeepsinghgrover2470
@jasdeepsinghgrover2470 4 жыл бұрын
Amazing video... You can also cover parts like random projections... That's something which can make them much more interesting.
@ritvikmath
@ritvikmath 4 жыл бұрын
That's a great idea!
@jamesbrown6591
@jamesbrown6591 2 жыл бұрын
This is the best explanation I’ve found, thank you 🙏
@ritvikmath
@ritvikmath 2 жыл бұрын
Glad it was helpful!
@extcresources531
@extcresources531 3 жыл бұрын
This is gold.. pure gold!!
@nelsonk1341
@nelsonk1341 2 жыл бұрын
Best DS KZbinr
@loveena419
@loveena419 3 жыл бұрын
Wow great explanation - I am hooked on these videos. Get the main points in a short timeframe - would be nice to have a video on Tuning RF and other ML algorithms. And the pre-req videos are very useful to have the right background to understand this one. Thank you!
@joycwang
@joycwang 2 жыл бұрын
great explanation much easier to understand
@millenaalves4169
@millenaalves4169 9 ай бұрын
what an awesome video! congrats, really helpful
@hameddadgour
@hameddadgour 2 жыл бұрын
Fantastic presentation!
@Cassius-p7y
@Cassius-p7y 2 жыл бұрын
Fabulously concise and accurate!!!
@dinhnguyenvo3040
@dinhnguyenvo3040 4 жыл бұрын
You are godly easy to follow, big thank you from my heart
@ritvikmath
@ritvikmath 4 жыл бұрын
Glad I could help!
@leoliao3389
@leoliao3389 Жыл бұрын
Thank you ritvik!! This video is so helpful!!
@ForcesOfOdin
@ForcesOfOdin 2 жыл бұрын
Loved the interpretability of the random forests idea! Very clever / useful. I'm guessing that you would want to reshuffle the dth feature for each i to avoid the effect that the shuffled data accidentally correlates with an important feature.
@NikBearBrown
@NikBearBrown 11 ай бұрын
The algorithm described is random sampling, not bagging. Not bootstrap samples are being created as described.
@karunasrees7402
@karunasrees7402 2 жыл бұрын
Thanks Professor , your explanation is very good. I am really enjoying your videos and they are helping me to focus on DS. I have seen many videos prior they only mention Idea 1 - Bagging and say it is Random Forests. But you have mentioned Idea 2 - Random Subspaces as well. Just to confirm on it , do the Random Forests use both the ideas ? Do you mean that Bagging + Random Subspaces = Random Forest ? If possible can you explain how to code it ? Thanks for your time on videos ! Many of your videos are good , even your Bias-Variance video is also super.
@SethuIyer95
@SethuIyer95 Жыл бұрын
Using associative rule mining and extracting all the rules from all decision trees we can interpret random forests.
@shahab4804
@shahab4804 Ай бұрын
Hi. Correct me if I'm wrong, but Sampling in bootstrap method is with replacement. But the way you said it doesn't have replacement
@roopanjalijasrotia3946
@roopanjalijasrotia3946 2 жыл бұрын
This is great! How about a point or two about the pitfalls of using random forest for time series
@kevinshao9148
@kevinshao9148 9 ай бұрын
Thanks for the great video! Do you have a video or any recommend for RandomForest on Regression math derivation? Thank you!
@squib3083
@squib3083 Жыл бұрын
Awesome explanation thank you
@beshosamir8978
@beshosamir8978 2 жыл бұрын
u r incredibly amazing ,but i have 2 questions : 1- What is the meaning of when i use all features the tree will be correlated to each other, i know what is the meaning of 2 features are correlated ,but what is mean when i say 2 trees are correlated ????? 2- when i need to determine how much a specific feature is important now , i trained the model using 80% of the dataset and now do i get the accuracy of this (80% dataset) of the dataset and after that shuffle my specific column and get the accuracy again of 80% of the data after shuffling then subtract them ? or i'm using 20% for both ? but u said in the video u r get the accuracy of the data that made that tree so u almost talking about the 80% , it make no sense for me using 20% of the dataset
@TheBalhamboy
@TheBalhamboy 4 жыл бұрын
Just found your channel. Really well explained. Thanks :)
@annikamoller7673
@annikamoller7673 3 жыл бұрын
what a great explanation, thanks man :)
@ritvikmath
@ritvikmath 3 жыл бұрын
You're welcome!
@Fat_Cat_Fly
@Fat_Cat_Fly 4 жыл бұрын
amazing video!! really helpful, thanks!!!
@ritvikmath
@ritvikmath 4 жыл бұрын
Glad it was helpful!
@keshavsharma267
@keshavsharma267 4 жыл бұрын
Thanks for the video. can you also explain interpretability via LIME and Shapely values?
@ritvikmath
@ritvikmath 4 жыл бұрын
Great suggestion!
@samuelharris4509
@samuelharris4509 Жыл бұрын
Why do we need the accuracy value on the 20% for each tree? Does that help with some weighted average?
@geoffreyanderson4719
@geoffreyanderson4719 3 жыл бұрын
Yo I heard the RF is bad alone and needs help when: 1) a strongly predictive linear feature exists in X. You gotta help the RF out by either feeding it the residuals from running the linear model on that feature first, so each model in the ensemble can do what it does best, the linear doing linear things and the nonlinear RF doing nonlinear things. Or else just preprocess to create an additional feature which is just the output of the linear model, and give the whole augmented feature set to the RF now. 2) 2nd order associations are expected to be important, because despite its subsampling of feature space, the RF is actually NOT good at automatically finding 2nd order predictive associations in X. THus we should help the RF out by doing some feature engineering of the 2nd order terms in advance into the X and then give it to the RF NOW. Further it might help still more by telling RF to stop using the typical 0.5 ratio default of subspace sampling and instead just focus on exactly 2 columns at a time, no more, no less, forcing it to look much closer at all the 2nd order associations that you expect should be found by the RF. These are hear-say and hypotheses. It would be cool to see how to do it in sklearn's pipeline on a dataset like "jewellery" which is used for demo code by the pycaret library. Jewellery has a strongly predictive feature "carets" or "weight" in its X. But they just look at trees alone in their model search, so I think it can be improved by helping out the fancy nonlinear tree models as described above.
@vladimirkirichenko1972
@vladimirkirichenko1972 2 жыл бұрын
excellent vid! thank you.
@trin1721
@trin1721 2 жыл бұрын
Can't we get the feature importance for free, without permuting, by looking at the accuracies of models trained with and without certain features (in the random subspace step)?
@ziaurrahmanutube
@ziaurrahmanutube 4 жыл бұрын
Love your videos, very helpful and well explained
@ritvikmath
@ritvikmath 4 жыл бұрын
Happy to hear that!
@Ostiosti
@Ostiosti 4 жыл бұрын
Great video. But why permute on the training data and not on the test data? This should also show the importance of the feature, right?
@beniborukhov9436
@beniborukhov9436 4 жыл бұрын
I think that it's since we're trying to focus specifically on the importance of each feature to the model. We're avoiding adding the additional variable of how well the model generalizes and therefore works on the test data so we can see the features' contribution to the model's accuracy under ideal conditions.
@YingjieWu-dt8vm
@YingjieWu-dt8vm Жыл бұрын
great video
@ahmetcihan8025
@ahmetcihan8025 3 жыл бұрын
This is it. Thank you so much .
@beatss8286
@beatss8286 3 жыл бұрын
Thank you!
@ritvikmath
@ritvikmath 3 жыл бұрын
You're welcome!
@manueltiburtini6528
@manueltiburtini6528 3 жыл бұрын
I love it!
@TawhidShahrior
@TawhidShahrior 2 жыл бұрын
you are a legend
@neuodev
@neuodev 3 жыл бұрын
You are aweomse!
@KennieinKorea
@KennieinKorea Жыл бұрын
impressive, thanks
@ritvikmath
@ritvikmath Жыл бұрын
Glad you liked it!
@warpathcucucu
@warpathcucucu 3 жыл бұрын
your're the goat
@niknoor4044
@niknoor4044 3 жыл бұрын
Great!
@SuperHddf
@SuperHddf 3 жыл бұрын
THX!
@leroychiyangwa8320
@leroychiyangwa8320 Жыл бұрын
kkkk i like the entrance style
@Fordalo
@Fordalo 2 жыл бұрын
you are goated
@TheProblembaer2
@TheProblembaer2 Жыл бұрын
I love you.
@Makako_Loko
@Makako_Loko 9 ай бұрын
Oh my deus thank you
Markov Chain Stationary Distribution : Data Science Concepts
17:33
Gradient Boosting : Data Science's Silver Bullet
15:48
ritvikmath
Рет қаралды 76 М.
#behindthescenes @CrissaJackson
0:11
Happy Kelli
Рет қаралды 27 МЛН
Hilarious FAKE TONGUE Prank by WEDNESDAY😏🖤
0:39
La La Life Shorts
Рет қаралды 44 МЛН
Жездуха 41-серия
36:26
Million Show
Рет қаралды 5 МЛН
StatQuest: Random Forests Part 1 - Building, Using and Evaluating
9:54
StatQuest with Josh Starmer
Рет қаралды 1,2 МЛН
Cross Validation : Data Science Concepts
10:12
ritvikmath
Рет қаралды 40 М.
Backpropagation : Data Science Concepts
19:29
ritvikmath
Рет қаралды 43 М.
Random Forest Algorithm Clearly Explained!
8:01
Normalized Nerd
Рет қаралды 684 М.
StatQuest: Random Forests in R
15:10
StatQuest with Josh Starmer
Рет қаралды 162 М.
The ROC Curve : Data Science Concepts
17:19
ritvikmath
Рет қаралды 37 М.
What are Random Forest Models? Simple Explanation
14:16
Quant Psych
Рет қаралды 3,4 М.
Loss Functions : Data Science Basics
16:40
ritvikmath
Рет қаралды 35 М.
What the Heck is Bayesian Stats ?? : Data Science Basics
20:30
ritvikmath
Рет қаралды 72 М.
Generative AI in a Nutshell - how to survive and thrive in the age of AI
17:57
#behindthescenes @CrissaJackson
0:11
Happy Kelli
Рет қаралды 27 МЛН