If you like, please find our e-Book here: datatab.net/statistics-book 😎
@MaryamHokmabadi Жыл бұрын
It's been years since I tried to understand this concept, and finally with your video I get what ROC AUC is. sincere thanks.
@JM-bv5fv Жыл бұрын
حالا که این غلط گفت توی توضیحات ابتدایی. 😅
@Dimonanes Жыл бұрын
shouldn't false positive rate on 1:56 be 2/5 instead of 3/5?
@oluwaseuncardoso8150 Жыл бұрын
I saw that mistake too!! you not alone!
@senoldogan92599 ай бұрын
So i am not alone, must be 3/5...
@nazmussadat4984 Жыл бұрын
Best explanation I've ever had. Thank you. ❤
@abdelgaderalfallah Жыл бұрын
Words can't express my sincere gratitude, many thanks.❤
@datatab Жыл бұрын
My pleasure 😊
@mdnayemsarker639 Жыл бұрын
no explanation can be better than this! Thanks.
@der_dataanalyst Жыл бұрын
Fantastische Erklärung. Didaktisch ist das wirklich extrem gut. Respekt 👍🏻
@datatab Жыл бұрын
Hey danke für dein Feedback! Was hast du studiert? Wenn du magst kannst du dich ja mal per mail melden: mathias.jesussek@datatab.de 🙂 . Inzwischen trennen wir die deutschen von den englischen Videos, daher gibt es das gleiche sonst auch nochmal auf deutsch auf unseren deutschen Kanal : ) LG Hannah und Mathias
@der_dataanalyst Жыл бұрын
@@datatab Hey. Ja sehr gerne. Ich habe Sozialwissenschaft mit dem Schwerpunkt Sozialforschung und Statistik studiert.
@AashishShah-h1k Жыл бұрын
At 1:57, the false positive rate should be 2/5. If you are declaring diseased to be positive class, then showing healthy people as diseased is false positive. Am I correct?
@datatab Жыл бұрын
Oh, thanks for your comment! Yes you are correct! That's a mistake in the video! Thanks!
@63yas8 ай бұрын
@@datatab so please pin this message.
@prof.dr.habibrehman735410 ай бұрын
Very very beautifully and simply explained Thanks
@datatab10 ай бұрын
Most welcome 😊 Regards Hannah
@JanielJ-i1x6 ай бұрын
Best of all I have searched , Keep shining Friend 😀
@youknowwhatlol66286 ай бұрын
you're also learning ML, are you not? haha....where are you from, friend?
@teddyperera85312 ай бұрын
This is a great explanation. Thank you
@Ani.DR.07 Жыл бұрын
Beautiful explaination. Thank you !
@abcdsoumenАй бұрын
Very well explained
@brandone4873 ай бұрын
Is it always true that the model with the larger AUC is the better classifier? Is there a case where a larger threshold will be used in application, and one ROC curve stays higher thru this threshold than a second ROC curve, even tho the first one may have a lower AUC than the second plot? Thanks!
@asaph03015 ай бұрын
Thank you for the video. I wondering how to get the 45 for the threshold value which is positive or negative
@ditmerk Жыл бұрын
Why is the false positive rate 3/5 and not 2/5 when 2 are wrongly classified as sick?
@AzizaRakhmonkulova Жыл бұрын
yeah, I agree with that, I think it should have been 2/5
@kevalakbari4619Ай бұрын
Can you always construct a ROC curve for a logistic regression model?
@zenlife37 Жыл бұрын
perfect explanation.
@tarek_maza9 ай бұрын
Great video
@datatab9 ай бұрын
Glad you enjoyed it
@KapilVashishat Жыл бұрын
Very Clear Explanation . Can you explain RoC for defaulter/ non defaulter ( altaman z score) and relate it to Type 1 error and type 2 error
@OSAMALENS9 Жыл бұрын
Him thanks for that, and I have a question regards, the DATATAB, how to find the frequency, I have had tried multiple times, can't find it is there is ability to do it or find it in that? thanks
@alainngeukeu6343 Жыл бұрын
great job , thank you
@paullink61954 ай бұрын
I think there is a mistake at 5:36. It shouldn't say "the larger the AUC, the better the classifier," but instead, "the further the AUC is from 0.5." This is because 0 is not the worst classifier; 0.5 is (a random classifier). An AUC of 0 would actually be perfect since you could just invert the output of the classifier-meaning always pick "yes" if the classifier says "no," and vice versa. This would result in a perfect classifier.
@ElowenFaye2 ай бұрын
Interesting point! From a purely logical point of view, you're definitely right, you could just invert the answer. But I think in diagnostic reality, an AUC of 0 would indicate that I have fundamental misconceptions (or accidental label swaps) in the model that need adjustment.
@abdullahilawal3251 Жыл бұрын
I’m grateful
@SyaerulRochman Жыл бұрын
Easy explanation
@csswatheshson15636 ай бұрын
i think theres a mistake in this video at 2:44 where "true negatives" means diseased persons correctly classified as diseased
@ElowenFaye2 ай бұрын
"True negative" means a healthy person is correctly identified as healthy (negative in this context means healthy). I think i's a bit confusing since we tend to associate "negative" with disease and "positive" with healthy, but it's the other way around.
@tomitomi79415 ай бұрын
Thank you so much
@fVNzO8 ай бұрын
It would be "An" ROC curve because we pronounce the R as "ar". So that's a bit annoying since you say a ROC curve for the entire video xd. But this was a nice explanation thanks.
@rajishthmittal Жыл бұрын
False positive rate should be 2/5.. not 3/5 at 2.00 minutes of the video.. 3/5 is true negative rate
@pp100y Жыл бұрын
Also true positive rate should be 4/6, right?
@babaabba934811 ай бұрын
you are right, she is misguiding us
@bhanuprakashbingi16627 ай бұрын
Here comes the toppers 😂 seriously who cares man all you need is to understand the topic
@practicemail3227 Жыл бұрын
truly amazing content in just 7 min video. hats off.
@sandeepb9397 Жыл бұрын
ie... that is!
@Weisysina5 ай бұрын
The false positive rate will be 2 of 5
@engkimatlau3273 Жыл бұрын
Good explanation ma'am, may i have your whatsapp no??
@datatab Жыл бұрын
Many many thanks for your feedback! But unfortunately we do not give out our phone number!