This really is the only video one needs to watch about rotation of axes.
@ForPubg-g6g8 ай бұрын
Unbelievable 😍, I understand 3 hrs lecture in 15 minutes. Thank you sir.
@hairyfiddler22744 жыл бұрын
U helped group of engineering students, thanks sir .
@WatermelonMoon2605 жыл бұрын
Thanks for this informative and quick but dense video. This supplemented my original understanding of rotations and helped me understand them better.
@Huiando4 жыл бұрын
Lovely way to covert hairy equation to a nice ellipse, parabola or hyperbola forms. Haven't thought rotations could be so useful. Thank you!
@itsmmdoha8 ай бұрын
This really is the only video one needs to watch about rotation of axes. (2)
@savannahconlin68654 жыл бұрын
This video is the only thing that has helped me understand this subject. Thank you!!
@yolo18673 жыл бұрын
wow what an amazing lecture on rotation/conics. covered everything i wanted. thanks sir.
@a__f45yay724 жыл бұрын
This concept became crystal clear to me,thank you very much for explaining and make it so much easier to me
@lucascruz39773 жыл бұрын
Thank you so much! Finally I understand how the conversion between the systems of coordinates is done.
@michaelpallmer8192 жыл бұрын
I believe the rotation angle should be about 26.57 degrees and the sine of theta should be 1/(5)^.5
@gkdgnomer Жыл бұрын
GREATEST INTRO EVER SIR
@jr01theweeb9 ай бұрын
Idk why its so hard to find the formula on 3:51 on the internet. Thank you for helping me convert from and to rotated axis!
@lepakshikumar11542 жыл бұрын
Thanks sir The method u provided for rotation of axis is quite easy to understand as compared to the traditional method
@zombockerman6 жыл бұрын
Very informative, loved the intro. Many thanks
@kartikeyayadav90883 жыл бұрын
Plz solve 5x^2 +5y^2 -8xy-9=0 On solving we get circle rotated by 45° Which does not change anything But on wolframalpha it shows an ellipse rotated by 45°
@math4every13 жыл бұрын
I am not sure how you got a circle. You do have A = C = 5 initially but if you have an xy middle term the graph could still be anything. If you look at the test at the end of the video B^2 - 4AC determines the shape. in this case B = -8 so B^2-4AC < 0 which makes it an ellipse. However if say B = 20, B^2 - 4AC > 0 and the graph would be a hyperbola and if B=10 then B^2 - 4AC = 0 and the graph is a parablola. When I made the substitution for 45 degrees my new equation had: A' = 5 - 8 + 5 = 2 B' = -10 + 10 = 0 C' = 5 + 8 + 5 = 18 after dividing by 2 x^2 + 9y^2 = 9 , which is an ellipse.
@thomasolson7447 Жыл бұрын
I'm guessing all the algebra associated with x^2±x*y+y^2=1 is just the circle. It somehow exists because of the cosine law. So, I'm guessing there is an algebra for the ellipsoid to. Which is a rotated/skewed sphere from conics. Or maybe the cosine law only works in 2d. I would need to think about this.
@alexzubkov95514 жыл бұрын
got a precalc test tomorrow, wish me luck
@That-Green-guy738 ай бұрын
It's been 3 years, how'd it go?
@Lylia-rk7ftАй бұрын
Rotate the coordinate axes to remove the xy-term and sketch the graph of 3x+6√3xy+9y+(2√3 -4)x-(4√3 +2)y+20 . How can I solve it?
@math4every1Ай бұрын
cot (2*theta) = (A - C)/B = (3 - 9)/6*sqrt(3) = -1/sqrt(3). This implies 2*theta = -60, hence theta = -30 degrees is the angle you need to rotate through to get rid of the xy term. Hence plug in x = x'cos(-30) - y'sin(-30) and y = x'sin(-30) + y'cos(-30). This should give you a conic section with no xy term. Then just graph that on an axis system rotated -30 degrees.
@alejandroalvarez48146 жыл бұрын
Thanks! Have a test that includes this tomorrow!
@boss-fh6oz2 жыл бұрын
Hello, thanks for making this video. What if my answer for the last question was (x'^2/4) + (y'^2/16) = 1. Would it be wrong? (Whether the answer is Yes or No, please state why)
@issammaine1349 Жыл бұрын
That was beautiful, thank you.
@吴陈炜3 жыл бұрын
Thank you for your video, sir. However, I've got a problem. When we do the transformation to 3x^2 + 2xy+y^2 = 1, if I choose cot(2theta)=1-3/2=-1, I would got a ellipse, while I choose cot(2theta)= 3-1/2=1, I would not get the the xy item eliminated. It is really a headache. Would you please explain it. I will appreciate it.
@math4every13 жыл бұрын
I am assuming an algebraic mistake. cot(2theta) = 1 implies theta = 22.5 = 45/2. So cos(theta) = sqrt(2 +sqrt(2))/2 and sin(theta) = sqrt(2 - sqrt(2))/2. If you call these C and S respectively you can see that 2*C*S = sqrt(2)/2 and C^2 - S^2 = sqrt(2)/2. If you use these for your substitution your x'y' term should have a coefficient of -3(2CS) + 2(C^2 - S^2) + (2CS) = (-3 + 2 +1)sqrt(2)/2 = 0.
@吴陈炜3 жыл бұрын
@@math4every1 Thank you for you reply. I recognized that I've made the the mistake. I got the proof at www.maa.org/external_archive/joma/Volume8/Kalman/General.html
@codewithmeenakshi6 жыл бұрын
Thank you so much Sir. I needed it... now my doubt is clear.. Thanks Sir!!
@wahabfiles62604 жыл бұрын
Is this similar to eigen vector transformation to remove correlation? Does xy represent correlation? What is the significance of 'xy' why remove it?
@embo15022 жыл бұрын
What do you do if there are neither A or C terms?
@math4every12 жыл бұрын
That was my very first example: xy = 18. You do the same thing.
@arongil7 жыл бұрын
Thanks for the comprehensive video.
@arongil7 жыл бұрын
I made a graph on Desmos (a great online graphing site) demonstrating the math you explained. www.desmos.com/calculator/6hys5gkvtq
@Happen2Bme4 жыл бұрын
Thank you so very much for giving us knowledge.
@jaysontran63074 жыл бұрын
Hello, Glen Gray. Can you help me find the points of intersection between an ellipse and a line? The line is defined through two points, while the ellipse knows the center coordinates, the radius of the short axis, the radius of the long axis, and an angle of inclination compared to the Ox axis. Thank you very much.
@math4every14 жыл бұрын
Jayson, You should be able to figure the equation in X and Y for the ellipse using the info from this video. The next step is usually to find the parametric representation of the line through the two points: X = x1 + (x2 - x1)*t , Y = y1 + (y2 - y1)*t . If you then substitute these into your equation for an ellipse you will get a 2nd degree equation in the single variable t. Solve this for t and plug back into your parametric equations to find (x, y) at your intersection.
@jaysontran63074 жыл бұрын
@@math4every1 Thank you very much
@jaysontran63074 жыл бұрын
I have 1 more question. How to calculate the swept angle of the center point between 2 direction points 0 o'clock and 3 o'clock. Does it have anything to do with the two-axis lengths. Thanks. I have 1 more question. How to calculate the swept angle of the center point between 2 direction points 0 o'clock and 3 o'clock. Does it have anything to do with the two-axis lengths. Thanks. i.imgur.com/iEKxi6Q.png
@math4every14 жыл бұрын
@@jaysontran6307 This is just a vector calculation. If P1 and P2 are two points on your ellipse and C is the center point then let V1 = P1 - C and V2 = P2 - C . Then just use the dot product V1*V2 = |V1|*|V2|*cos(theta) where theta is the angle between the two vectors.
@jaysontran63074 жыл бұрын
I'm really sorry, my ultimate goal is to find the coordinates P3. Point P3 is the central point on the arc P1, P2. Up to now I have only calculated the coordinates P1, P2 and C. imgur.com/WZBKiJ8
@nz74675 жыл бұрын
THANKS!!! This helped so much
@chileshechitabanta99954 жыл бұрын
Its all clear now, i have just found out the whole idea about conic sections
@ozzyfromspace3 жыл бұрын
This was awesome! Thanks 😊🙏🏽🙌🏽
@عطاالدهامشة-ع8ح3 жыл бұрын
Dear sir How can rotate y=cos(x) With best wishes
@math4every13 жыл бұрын
Just use the substitution described at the 6:07 time stamp. Is this really what you want to do?
@عطاالدهامشة-ع8ح3 жыл бұрын
@@math4every1I mean, after rotation, a difficult equation appears, so how do we find the value of y through Lambert's equation?
@satishsaini25517 жыл бұрын
excellent work sir...
@FernandoBelloDeveloper6 жыл бұрын
GREAT VIDEO! Thanks! :D
@hamzamajid85392 жыл бұрын
I actually can't get how we derive the angle of rotation's equation.
@math4every12 жыл бұрын
We plug our rotation transformation into the original equation which has the xy term we wish to remove. At about the 8:51 mark you can see the result of this substitution and the coefficients of the new equation. We use the coefficient of the new XY term and set that equal to 0 because we want it to disappear. This is around the 9:19 mark. This gives us the desired angle in terms of the old A, B, C coefficients. In particular cot(theta) = (A - C)/B.
@procerpat92233 жыл бұрын
outstanding !
@akshatjangra41673 жыл бұрын
Nice song taste !!!
@0enzogamer03 жыл бұрын
Thanks a lot
@ikarus19553 жыл бұрын
Thankfully
@bishalsarmah792019 күн бұрын
Why coefficient of x'y'=0
@math4every117 күн бұрын
We are trying to convert this back into our old form Ax**2 + Cy**2 + Dx + Ey + F = 0 where it is easy classify and graph the equation as one of our standard conics (parablola, ellipse, hyperbola).
@nashvaughan31753 жыл бұрын
Excellent video. Thank you!
@renecabrera72243 жыл бұрын
Thanks
@jdcurrie19747 жыл бұрын
is there a way to rotate solid 3d graphs by rotation of axes.
@math4every17 жыл бұрын
Yes of course, but that would take another video. Essentially you do a double rotation, like once in the xz plane and then around the z axis (xy plane). You typically go to a 3x3 matrix which is a product of smaller transforms.
@jeatig7 жыл бұрын
What would (x', y') be if the point (-2, 6) was rotated counterclockwise 30°??
@math4every17 жыл бұрын
This would be the same as rotating the axes clockwise 30 degrees. x' = (-2)cos(-30) + 6sin(-30) = -sqrt(3) - 3 y' = -(-2)sin(-30) + 6cos(-30) = -1 + 3sqrt(3)
@pedronpetrus8263 жыл бұрын
I owe you an A-level
@feruruguayo4 жыл бұрын
muchas gracias.
@golden_fpv90233 жыл бұрын
Well made video, needs much better explained steps.
@cklecture92035 жыл бұрын
very good
@muhammadseyab90323 жыл бұрын
helping video
@Snoo292933 жыл бұрын
I'm studying web development and apparently math and physics seem to be important so I got to study those stuff now.
@krizz-4045 жыл бұрын
omg thank you soooo much
@strugglingcollegestudent3 жыл бұрын
Thank you (:
@toddbiesel42887 жыл бұрын
It appears that you are saying cosine when you mean cotangent.
@math4every17 жыл бұрын
Yes, sorry about that. The slide is correct. Sometimes my mouth moves along quicker than my brain. It is more used to saying cosine than cotangent and I do hurry a bit to keep the videos reasonably short.
@ahmedsherif21825 жыл бұрын
You r awesome
@vaishnavipal22983 жыл бұрын
Your voice is not clear there are disturbances and noise