Thank you for this! Your explanation about the very basic way in which bagging and boosting works is so wonderful, I did not find this in any other video!
@SASUsers3 жыл бұрын
So glad you enjoyed it, Astha!
@ge_song5 Жыл бұрын
Finally, I understood Gradient Boosting.
@SASUsers Жыл бұрын
Awesome! Glad you found this tutorial helpful!
@manideepgupta24334 жыл бұрын
Excellent explanation! Please do make more videos as they are really really helpful!
@kalipramod91014 жыл бұрын
Thank you for the great video with explanation of boosting and bagging in simplest way, you have nailed it.
@SASUsers4 жыл бұрын
We appreciate your feedback and thanks for sharing!
@ajaykushwaha-je6mw4 жыл бұрын
Hi Crista, Thank you so much for this video. To understand Gradient Boosting I went through various video but your video gave me proper and required knowledge. You went slow and that helped us to understand in best possible way. Thank you so much and keep posting lecture on ML.
@SASUsers4 жыл бұрын
Ajay, thank you so much for the feedback!
@dianamarica74292 жыл бұрын
Great tutorial, thank you!
@SASUsers2 жыл бұрын
Awesome! Thank you for your feedback!
@SASUsers2 жыл бұрын
Diana, there are several options for taking your trained models and displaying information about them in a Visual Analytics dashboard. I’ll suggest two of the most likely scenarios. First, you can directly add your model as an object in your dashboard. The advantage of that is as the data updates, the model will update automatically as well. Secondly, you may wish to Derive Predicted values (or probabilities) from the model and then combine those with inputs (effects) in a dashboard. I show you how to do this in the first lesson of our SAS® Visual Statistics in SAS® Viya®: Interactive Model Building course.
@nz_proud4 жыл бұрын
Excellent video. Thanks.
@SASUsers4 жыл бұрын
Awesome, thank you for the feedback!
@vyacheslavefimov51023 жыл бұрын
Thank you for amazing content!
@SASUsers3 жыл бұрын
Vyacheslav, thank you so much for the feedback!
@tommyarmstrong76734 жыл бұрын
So cool Christa! Nice work :)
@Shady93 жыл бұрын
awesome explanation, thanks a lot.
@SASUsers3 жыл бұрын
You are welcome!
@gun6453 жыл бұрын
thanks 😊
@chrisb.o.agalaph.d.19162 жыл бұрын
Nicely done. How can I do this with SAS 9 not SAS Viya Model Studio?
@SASUsers2 жыл бұрын
Great question! Stay tuned, we'll have an answer for you shortly...
@SASUsers2 жыл бұрын
Behind every node, Model Studio uses procedures to execute the task- you can see this in action in the node’s results where it displays the code for training and scoring. For the Gradient Boosting node, the procedure is ‘proc GRADBOOST’. Here is the documentation for proc GRADBOOST: SAS Help Center: Getting Started: GRADBOOST Procedure 2.sas.com/6054MQKsG
@chrisb.o.agalaph.d.19162 жыл бұрын
@@SASUsers Thanks so much. This is great!! Will try it out and see how it goes. Will get back!
@SASUsers2 жыл бұрын
You're very welcome, Chris, and that sounds great - wishing you success!
@Rahul_ABCD4 жыл бұрын
Hello Ma'am .... Is there any video on AdaBoost?
@SASUsers4 жыл бұрын
Thank you for your inquiry! We are trying to research this for you!
@SASUsers4 жыл бұрын
In this video at time stamp, 5:16, the narrator mentions ADABOOST and how it differs from gradient boosting. We do not have any videos that address ADABOOST specifically. However, this user group paper: 2.sas.com/60501sTDw discusses using ADABOOST.
@moviecric16474 жыл бұрын
Base SAS training Day 1 kzbin.info/www/bejne/oaeWXqWlr7dji5Y
@MasterofPlay74 жыл бұрын
lol i used python, this is so easy in SAS. Is this EM?
@SASUsers4 жыл бұрын
This paper may be helpful: 2.sas.com/6053GO7tx
@moviecric16474 жыл бұрын
Base SAS training Day 1 kzbin.info/www/bejne/oaeWXqWlr7dji5Y
@algorithmicallypuzzled10033 жыл бұрын
And then you over train and the kid starts looking into how many definitions of continent there are, and you are back to random answers!
@ragaistanto67224 жыл бұрын
Terimakasih... Untuk teman" lainya saya juga ada nih video tutorial cara koding SVR, SVM, LR, RF, GB, dan XGB di python siapa tau cocok. kzbin.info/www/bejne/o2m9hquJrrWqrsU