Scheduling to Minimize Maximum Lateness ( Greedy Algorithm ) - Algorithms

  Рет қаралды 46,927

MisterCode

MisterCode

Күн бұрын

Пікірлер: 16
@aruneshsingh5698
@aruneshsingh5698 Жыл бұрын
This is the best lecture i have seen on this topic
@Amy-tw3zh
@Amy-tw3zh 4 жыл бұрын
I guess this is intuitive after all - we are going to start working on assignment whose deadline is the closest.
@medoalnaser
@medoalnaser 8 жыл бұрын
Thank you for putting this content on KZbin
@mikycaballero1575
@mikycaballero1575 8 жыл бұрын
gnj
@Amy-tw3zh
@Amy-tw3zh 4 жыл бұрын
Also good to note that this is a "stay ahead" proof and not "exchange argument" proof.
@Amy-tw3zh
@Amy-tw3zh 4 жыл бұрын
Analogy: I might get one of the assignments done today because its only gonna take me 1h, even though the deadline is so far away. Doing this, i will risk being too late on Assignment 2 which is due only 2 days from now! So It's better to do assignment 2 now so i minimize the time i'll be late for that assignment.
@abdelhakelidrissi6881
@abdelhakelidrissi6881 4 жыл бұрын
Dear, In the definition of the maximum lateness, you consider that: For all i, Li=max(0,Ci+pi) It's the definition of the tardiness not the definition of the lateness of a job. You must change maximum lateness by maximum tardiness, because lateness can be negative. Best,
@MrACrazyHobo
@MrACrazyHobo 4 жыл бұрын
Best video on the topic.
@mohamed.zarai25
@mohamed.zarai25 3 жыл бұрын
Thank you for this work, very useful for me in integrer programming
@ruseruseruse
@ruseruseruse 7 ай бұрын
"Imagine this: You are a student and you are a bit late on doing your assignments" hit me, lmao
@leetchef6602
@leetchef6602 5 жыл бұрын
great work
@soumyasen1483
@soumyasen1483 4 жыл бұрын
When we convert the equality l'_m = f_n - d_m to an inequality, shouldn't it be a < instead of a f_m - d_m, so shouldn't it be l'_m < f_n - d_n, and not l'_m
@capturedart0
@capturedart0 8 ай бұрын
where is the actual code?
@MiguelRamirez-rk4wk
@MiguelRamirez-rk4wk 6 жыл бұрын
"This shouldn't be too hard to imagine" lmaooo
@arianj2863
@arianj2863 5 жыл бұрын
Your proof seems to be incomplete right? You're only considering the case where we have adjacent inversions, what if we have non-adjacent inversions though? I feel as if there is some way to proof that whenever we have an inversion, we also have an adjacent inversion, but I'm not sure. EDIT: I just realised that you can achieve an array sorted by deadlines using just adjacent inversions, just like how it goes in insertion sort.
@scholli99
@scholli99 6 жыл бұрын
nice fake english accent xd
Interval Partitioning ( Greedy Algorithm ) - Algorithms
14:37
MisterCode
Рет қаралды 49 М.
Interval Scheduling Maximization (Proof w/ Exchange Argument)
20:20
Back To Back SWE
Рет қаралды 65 М.
УДИВИЛ ВСЕХ СВОИМ УХОДОМ!😳 #shorts
00:49
coco在求救? #小丑 #天使 #shorts
00:29
好人小丑
Рет қаралды 65 МЛН
Dynamic Programming isn't too hard. You just don't know what it is.
22:31
DecodingIntuition
Рет қаралды 200 М.
Scheduling with deadlines: minimizing lateness
17:22
Design and Analysis of Algorithms
Рет қаралды 21 М.
Being Competent With Coding Is More Fun
11:13
TheVimeagen
Рет қаралды 120 М.
The Traveling Salesman Problem: When Good Enough Beats Perfect
30:27
Premature Optimization
12:39
CodeAesthetic
Рет қаралды 836 М.
Master Method ( incl. Step-By-Step Guide and Examples ) - Analysis
16:18
The hidden beauty of the A* algorithm
19:22
Polylog
Рет қаралды 901 М.
Interval Scheduling ( Greedy Algorithm ) - Algorithms
10:54
MisterCode
Рет қаралды 106 М.
3.2 Job Sequencing with Deadlines - Greedy Method
13:29
Abdul Bari
Рет қаралды 1,4 МЛН