Quick, efficient and explained thoroughly with clarity. Educational videos like yours are the best, cheers
@johannaw2031 Жыл бұрын
What a relief. I didnt even have to focus. You just gave me the knowledge. This is how teaching is supposed to work. Thank you!
@Q_z_4 жыл бұрын
9 years later... still helping some helpless student like me out and not wasting ay necessary time to explain. Thanks so much!
@AdityaFingerstyle6 жыл бұрын
Your video, although shorter than most videos on KZbin, is by far the best one. Short and clear - that's how I like my tutorials
@dmitrijskass67609 жыл бұрын
Clearly shown, clearly explained, clearly compared with other methods. The 3rd part is what is almost always missing in the other tutorials. This tutorial is just perfect. Thanks!
@anastasiagavrilita65674 жыл бұрын
Half of a semester was outran by your explanations (even those at the end of the video, where you explain why we should know all 3 methods). Sir, thank you!
@kolcha Жыл бұрын
Oscar, you are one of the best teacher I have ever seen. You gave extra critical information that make grasp of the concept easy and pleasant. Cheers from the Great Khurasan, Land of Al-Khawarazmi
@omkardhami26879 жыл бұрын
Very clear, enjoyed all your videos. You taught me in 4min what I spent 30min trying to figure out from lecture notes. Thanks!
@-i3ird-p156 Жыл бұрын
This saved me so much times, while giving me enough explanation to help me understand it. Thanks for the video, you are the best.
@theyammi43711 ай бұрын
Simply put and straight to the point. If only Textbooks were this way.
@jotieshagi59545 жыл бұрын
Hands doen best tutorials on numerical analysis on youtube. keep on rockin man
@mopeppermomoney7 жыл бұрын
If only my textbook would say things this clearly. Thank you!
@wolfix2002110 ай бұрын
Thank you so much! just within 4 minutes you open gates of the secant method. Much appreciated!
@nikolajlapkovskij9 ай бұрын
Absolutely fantastic explanation. Even after 12 years. Huge thank you and much much much appreciated!!!
@AJ-et3vf3 жыл бұрын
Awesome. Nice and concise with clear visuals and lucid explanations.
@SumitYadav-mx8bp4 жыл бұрын
Clear, meaningful and thoroughly explained..this the kind of video which makes learning so simple and enjoyable.. nowdays... thanks for uploading :)
@timmy32113 жыл бұрын
It says a lot about your dedication that your 10 year old video had the newish feature of chapters added to it, nice job.
@jackieduy40083 жыл бұрын
DOES NOT GET BETTER THAN THIS. 45 min lecture compressed into 3 min!!!
@loverhajverian12 жыл бұрын
excelent dude :) i missed the class , but u helped me in covering the missed lecture. GOOD JOb
@ghelbymuhammadfaid93294 жыл бұрын
Sir, you saved my life. Thank you very much
@CristianGhervasa Жыл бұрын
11 years later, still efficient! thanks a lot, i finally understand the logic, in the teacher's book it's kind of unexplained
@tauseefrehman79099 жыл бұрын
Thanks so much man, that video was very concise and to the point!
@AbhishekKumar-vf5ep3 жыл бұрын
Thanks for explaining in simpler way...😊
@heromiIes12 жыл бұрын
Great job. Keep making good videos like this.
@pekou7855 жыл бұрын
Well presented!Keep it up!
@WJ-gs8kk8 жыл бұрын
very clear and easy to understand! Thank you!
@littleflower7825 жыл бұрын
Has my semester been actually saved in 4 minutes?????
@squareroot169810 ай бұрын
I reckon! Bloody good insight. Clear, concise and articulately making sense of all three methods. Fire stuff
@gecaprathamesh65835 ай бұрын
Nice video! Concept clear!!!Thanks :)
@ChuckRage9 жыл бұрын
This was very helpful, thank you.
@kingKabali3 жыл бұрын
Superb!! Why I didn't find at the start of the semester.
@moizhd91328 жыл бұрын
Thanks mate! You saved me from failing a maths test
@PiyushGuptaknl10 жыл бұрын
you are the saviour dude!!! :D
@RebeliousSapien10 жыл бұрын
Thank you. This was extremely helpful.
@martinz64458 жыл бұрын
Oscar, you are a legend, thanks
@michaelprovost60666 жыл бұрын
Thank you! This is excellent!
@emiliskakanis99116 жыл бұрын
best example i saw throw all youtube
@zeynepbetulkaya36453 жыл бұрын
So clear, thank you
@micelamicela10 жыл бұрын
Thank you! Very clear.
@ronanm44184 жыл бұрын
BRILLIANT!
@GIChiyo9 жыл бұрын
Thank you so much, your videos are fantastic!
@hossiluc5 жыл бұрын
Thanks for your service
@StarryGlobe0896 жыл бұрын
perfect explanation!
@dakshadaksha10713 жыл бұрын
Thanks for wonderful lecture
@rajangupta7324 жыл бұрын
It was truly Awesome
@aenesturan3 жыл бұрын
great video, thank you
@HellOnGames4 жыл бұрын
Thanks! You saved my day.
@lucianoinso6 жыл бұрын
Clear and to the point (root? lol), thank you!
@scilabo11 жыл бұрын
great explanation. clear.
@9Patroclus12 жыл бұрын
Thank you, mate!
@jacquesbautista-plante549711 ай бұрын
my teacher explained it terribly, thank you so much for clearing up this muck!
@raen71413 жыл бұрын
Thank you for this video! I could not find an understandable explanation for this method anywhere in the textbook and my professor has been travelling a lot lately, so jet lag made him mildly incoherent.
@rankintoday11 жыл бұрын
Great Video. Thank You. Saved me lots of time.
@gaaraofddarkness Жыл бұрын
2:45 how did you arrive at the expression of alpha as the ratio of error ratios?
@OscarVeliz11 ай бұрын
Check out my video on order of convergence kzbin.info/www/bejne/gIXMn5imedNkmqs
@karteektavarageri51404 жыл бұрын
for doing secant method, do we also need take into account the change in signs to determine what our next values become?
@OscarVeliz4 жыл бұрын
Short Answer: Secant Method doesn't consider signs. It just uses the iteration function. Long Answer: Using where the function changes sign is a good strategy for picking starting points. If you force Secant Method to always consider signs, then you are essentially using Dekker's Method (kzbin.info/www/bejne/Y5OvhIWfpNCafM0) which guarantees convergence to a root.
@karteektavarageri51404 жыл бұрын
@@OscarVeliz Got it, thank you so much Oscar, much appreciated.
@OscarVeliz4 жыл бұрын
On second thought, forcing Secant Method to always have different signs would actually be more in line with False Position Method kzbin.info/www/bejne/ppiUemt3fJpsf80
@karteektavarageri51404 жыл бұрын
@@OscarVeliz Ahh ok, yea I see the resemblance. I don't really know the other method, but I do know false position. Thanks Oscar.
@SempatikBalkc7 ай бұрын
so succesfull thank you
@ugottabefresh5 жыл бұрын
THANK YOU
@15october919 жыл бұрын
THANK YOU!
@15october917 жыл бұрын
Over two years later I still think this is a great video!
@manasisrivastava33138 жыл бұрын
Thank you so much! :)
@palmoasis5 жыл бұрын
one question, why did we stop when the value of Ea was 9.6% and not when it was 60.something %?
@prantikdas62185 жыл бұрын
What books do you read for numerical analysis?
@OscarVeliz5 жыл бұрын
In my more recent videos, I try to use and show original papers, especially when a method is named for someone. Otherwise, the most commonly used books I've used on this channel have been "Numerical Methods That (Usually) Work" by Forman S. Acton, "Elements of Numerical Analysis" by Peter Henrici, and "Numerical Recipies" by Press et al.
@OscarVeliz13 жыл бұрын
@raen714 You're very welcome.
@omkarrr24._922 жыл бұрын
The x3 you took i.e x3= 3 … (2:19) In the above line you have mentioned that x n+1 So if you are taking xn as x2 then only it satisfies the formula . Maybe it's wrong . Or I'm not able to get it !!
@OscarVeliz2 жыл бұрын
I'm not sure I understand the question. With the current iteration (in this case n=2) the next iteration count is n+1 (here 3). This means to find x_3 we'll need to use the previous two x values saved inside of x_2 and x_1. Those were the numbers 3 and 2 to start with. Then replace everywhere we have x_2 with the number 3, and x_1 gets replaced with the number 2. The result 2.423.... gets stored into x_3 and then we repeat using the latest two numbers x_3 and x_2 to compute x_4. And so on.
@omkarrr24._922 жыл бұрын
@@OscarVeliz ok got it , thnx ♥️
@dansxie93406 жыл бұрын
thanks all for the all nonlinear equation method!!!!
@shlomohadar31944 жыл бұрын
bless you.
@daliaruizdiaz20244 жыл бұрын
fuck, i was looking for your channel all this time and NOW I find you, ONE DAY BEFORE MY EXAM. Anyway, Thanks for the explanation :) prepare yourself for spam :) I'm gonna watch your entire channel in one night
@kikokimo26 жыл бұрын
How to test if this method converges? Is there a way like for Fixpoint iteartion, to try g'(x) < 1?
@OscarVeliz6 жыл бұрын
Secant Method is an "open" method like Newton's and doesn't have a convergence guarantee. There is a way to force Secant Method to converge which is the basis for the Brent-Dekker Method which I have a video on kzbin.info/www/bejne/Y5OvhIWfpNCafM0
@DanielViolet112 жыл бұрын
YES! thank you :')
@EbraM967 жыл бұрын
Way to go.
@jamiemedalla63263 жыл бұрын
sir where did you made your graph presentation
@OscarVeliz3 жыл бұрын
A free program called Microsoft Mathematics. The new version is called Microsoft Math Solver.
@EbraM967 жыл бұрын
But how can I efficiently choose the first two points ? or should I just randomize them ?!
@OscarVeliz7 жыл бұрын
The points you pick should vary depending on your function and how you know it behaves. Completely random and far away points are probably not efficient. I'd recommend either: picking two points that are close together (giving you a close approximation of the tangent) or one point where you know your function is positive and one when your function is negative (so that the secant might intersect the x-axis near a root).
@lounesbenali48893 жыл бұрын
3:50 No, you Thinks !
@sahandanushka73714 жыл бұрын
Should we pick X1 and X2 like [f(X1)0] or [f(X1)>0 and f(X2)
@OscarVeliz4 жыл бұрын
Picking points where the function has different signs is a good strategy which is also used by Brent-Dekker. Another is to pick two points that are very close together to better approximate f'.
@sahandanushka73714 жыл бұрын
@@OscarVeliz Thanks 🤩🤩 this video really helped me
@JayRD985 жыл бұрын
So you pick x1 and x2 random?
@OscarVeliz5 жыл бұрын
Try graphing. Picking two points where the function has opposite signs is also a good strategy like you do with Bisection (kzbin.info/www/bejne/g52zkIpjpMeohMk), False Position Method (kzbin.info/www/bejne/ppiUemt3fJpsf80), or Brent's Method (kzbin.info/www/bejne/Y5OvhIWfpNCafM0).
@vangelis_tr6132 Жыл бұрын
hello!!! Thanks for the explanation. I just have one question. What is the M?
@OscarVeliz11 ай бұрын
Check out my video on order of convergence kzbin.info/www/bejne/gIXMn5imedNkmqs
@joannasalazar70952 жыл бұрын
thanks
@ramananramaswamy27637 жыл бұрын
If possible upload a beautiful video regarding regula falsi
@OscarVeliz6 жыл бұрын
My pleasure kzbin.info/www/bejne/ppiUemt3fJpsf80
@srikrishnamaths7883 жыл бұрын
👌🙏
@faheemrajuu4 жыл бұрын
when you will understand the whole thing... you would be like "excellent!!!"
@naradaabeysekara6 жыл бұрын
How to pick X1 and X2 values?
@OscarVeliz6 жыл бұрын
Try graphing. Picking two points where the function has opposite signs is also a good strategy like you do with Bisection (kzbin.info/www/bejne/g52zkIpjpMeohMk), False Position Method (kzbin.info/www/bejne/ppiUemt3fJpsf80), or Brent's Method (kzbin.info/www/bejne/Y5OvhIWfpNCafM0).
@frisynovel23742 жыл бұрын
This video aged well like a Fine Wine!
@Peter-bg1ku4 жыл бұрын
Great video. Open a Patreon page perhaps. You deserve a coffee.
@OscarVeliz4 жыл бұрын
I have a GitHub Sponsors page on the code repository for the channel github.com/sponsors/osveliz if you'd like to support what I do.
@ilyaanufriev13443 жыл бұрын
It's funny that you say about danger of devision by zero as if you die if you do it.
@RealNaminami23 күн бұрын
1:57 1000-7 ahh example
@AlexanderHL19197 жыл бұрын
But my dude, this is not the Secant method... You showed the False Position Method which is a Bisecant-Secant hybrid method.. Will the real Secant Method please stand up?
@OscarVeliz7 жыл бұрын
I have made a video on False Position Method kzbin.info/www/bejne/ppiUemt3fJpsf80 The usual form of Secant Method is x_n = x_(n-1) - f(x_(n-1) * ((x_(n-1) - x_(n-2))/(f(x_(n-1)) - f(x_(n-2))) but by multiplying both the nominator and denominator of the fraction by 1/(x_(n-1)-(x_(n-2)) you get form I show which looks a lot like Newton's Method without the derivative. I also prefer to use n+1, n, and n-1 instead of n, n-1, and n-2.