Second derivative test | MIT 18.02SC Multivariable Calculus, Fall 2010

  Рет қаралды 37,315

MIT OpenCourseWare

MIT OpenCourseWare

Күн бұрын

Пікірлер: 20
@sarahgottemoller1322
@sarahgottemoller1322 8 жыл бұрын
This is something I have been struggling with for the last few days, but was beautifully explained in this video and now I really understand it. Thank you so much!
@Cineburk
@Cineburk 8 жыл бұрын
Holy cow! You must be a calculus wizard. No one in my class could understand this after an hour of confusing exposition. But you taught it in less than 9 minutes and it's crystal clear.
@MirageScience
@MirageScience 12 жыл бұрын
If the discriminant is found to be equal to zero at a c.p. then the test is inconclusive. If the discriminant is greater than zero and A negative then the critical point is a maximum. Most people probably got that second part.
@Palar_Bear
@Palar_Bear 11 жыл бұрын
Thank you for the video! A few questions: why do you check the value of A to determine whether it's a max or min? Is it possible to check the value of C instead, for example? What happens if A = 0 when you check whether it's a max or min (provided you get AC-B^2 > 0)?
@erikumble
@erikumble 3 жыл бұрын
If A =0, then it is not possible for AC-B^2 to be positive, since the (B^2) term is >= 0 and it gets subtracted, so if A=0, then the formula can at most give 0 which is not > 0. If the formula gives something greater than 0, then AC - B^2 > 0 means AC > B^2. We check A, but we could also check B. This is because both A and B will be positive or both will be negative. If one of them was positive, and the other negative, then their product is negative which is certainly not greater than B^2. So yes, we could just as easily check A or C to determine if it is a local minimum or maximum, because they have the same sign.
@danielfhb
@danielfhb 12 жыл бұрын
if A=0 It means that 0*C -B^2 = -B^2 so that means that AC-B^2 is always less than 0 it can't be grater than 0 because B^2 is always positive
@adamv.488
@adamv.488 8 жыл бұрын
Here the second derivative evaluated at the critical point equals zero, yet it appears in the denominator in the formula that we used to categorize the kinds of critical points...thoughts on this?
@3rbdh
@3rbdh 12 жыл бұрын
thank you Mr. Joel Lewis, that second Derivative test was very helpful, our instructor don't allow us to use calculator though.
@connyberggren3790
@connyberggren3790 6 ай бұрын
One issue would be when AC = B^2 then AC-B^2 = 0. how do you determine what kind of point it would be then?
@explorador26
@explorador26 10 жыл бұрын
gracias.
@choicefresh
@choicefresh 11 жыл бұрын
Why does this test work? It'd be nice to understand how it was derived rather than just memorizing the cases.
@erikumble
@erikumble 3 жыл бұрын
Here, this might help: www.khanacademy.org/math/multivariable-calculus/applications-of-multivariable-derivatives/optimizing-multivariable-functions/a/reasoning-behind-the-second-partial-derivative-test
@Palar_Bear
@Palar_Bear 11 жыл бұрын
Never mind my last question, I saw, just as i posted the comment that it's impossible for that to happen.
@misspeckpeck
@misspeckpeck 12 жыл бұрын
what if AC-B^2 > 0 and A=0?
@jpnewshazaribagh8130
@jpnewshazaribagh8130 3 жыл бұрын
Bro then the AC-B^2 thingy won't be more than 0. Unless B is imaginary. 🤔.
@DanNCy24
@DanNCy24 8 жыл бұрын
super helpful ty
@choicefresh
@choicefresh 11 жыл бұрын
Thanks for the video though!
@bearjibster
@bearjibster 11 жыл бұрын
love your hair man. love your video
@RapMastaZ
@RapMastaZ 13 жыл бұрын
helpful, thanks!
@DANGJOS
@DANGJOS 13 жыл бұрын
very helpful!!
Max/Min | MIT 18.02SC Multivariable Calculus, Fall 2010
13:59
MIT OpenCourseWare
Рет қаралды 27 М.
Regions of integration | MIT 18.02SC Multivariable Calculus, Fall 2010
17:47
小丑教训坏蛋 #小丑 #天使 #shorts
00:49
好人小丑
Рет қаралды 29 МЛН
“Don’t stop the chances.”
00:44
ISSEI / いっせい
Рет қаралды 35 МЛН
Multi-variable Optimization & the Second Derivative Test
13:36
Dr. Trefor Bazett
Рет қаралды 101 М.
Extended Gauss' Theorem | MIT 18.02SC Multivariable Calculus, Fall 2010
18:53
Second partial derivative test
11:52
Khan Academy
Рет қаралды 95 М.
What the Second Derivative Tells Us
9:02
No Frills Publishing
Рет қаралды 69 М.
Multivariable maxima and minima
8:04
Khan Academy
Рет қаралды 220 М.
Second Derivatives Using The Multivariable Chain Rule
6:11
Mike, the Mathematician
Рет қаралды 3 М.
What exactly is e?  Exploring e in 5 Levels of Complexity
13:34
Fast Inverse Square Root - A Quake III Algorithm
20:08
Nemean
Рет қаралды 5 МЛН