Simple Linear Regression MLE are the same as LSE

  Рет қаралды 12,596

Stats4Everyone

Stats4Everyone

Күн бұрын

Пікірлер: 15
@shahbazahmad5297
@shahbazahmad5297 2 жыл бұрын
Very very helpful.... Thanx.... I was just unable to catch up with the pace of professor in the linear models... Your playlist really helped me a lot ... Thanx again ❤️
@Stats4Everyone
@Stats4Everyone 2 жыл бұрын
So glad to hear that you found this playlist to be helpful!! :-)
@judhajeetchoudhuri219
@judhajeetchoudhuri219 10 ай бұрын
thanks a lot , life saver before the stats exam
@ezraezekielemmanuel1254
@ezraezekielemmanuel1254 2 жыл бұрын
Thank you ma very much for this video. You made my day.
@RaviShankar-jm1qw
@RaviShankar-jm1qw Жыл бұрын
Can you please explain why y will have normal distribution?
@elviswanasunia878
@elviswanasunia878 3 жыл бұрын
Thank you very much for this video. However ,I think the Yi's are independent but not identically distributed since they have different expected values. Despite viewing the Xi's as constant, we change these values from one y value to another. What do you think about this?
@Stats4Everyone
@Stats4Everyone 3 жыл бұрын
You are correct. The Error term, epsilon is identically distributed. The y's depend on the subscript i. For each i, y will have a different expected mean.
@aditshrimal4989
@aditshrimal4989 2 жыл бұрын
Thank you very much for this video. I just had one doubt. Don't we take ln after L in MLE? Or is it not required here?
@quingquing
@quingquing 2 жыл бұрын
no need in this case for the linear model of y.
@Counter930
@Counter930 2 жыл бұрын
Hey, isn't it wrong to assume that x_i are non-random? What I understand is that they ARE random and we can only say that y_i is unconditionally normal if x_i and y_i are jointly normally distributed
@AbhinavSingh-oq7dk
@AbhinavSingh-oq7dk 2 жыл бұрын
Can you explain why did you say 'these are residuals' at 7:50 , when they are epsilon/error? In your this video: kzbin.info/www/bejne/iIu5iZlrZZJ7jac , the residual is being minimised, ie (Yi - Yi_hat)^2 where Yi = beta_0 + beta_1 * Xi + Error and Y_hat = beta0_hat + beta1_hat * Xi Just asking. Bit confused.
@solvedstatistics628
@solvedstatistics628 3 жыл бұрын
Thank you so much mam......
@Wuho88
@Wuho88 2 жыл бұрын
Why are there ads every 10 seconds
@Stats4Everyone
@Stats4Everyone 2 жыл бұрын
I'm sorry you had that experience! I do not usually have "Mid roll" adds on my videos. I mistakenly had them on this video; I went ahead and corrected this, so you should not have any "mid roll" adds for this video now.
@Wuho88
@Wuho88 2 жыл бұрын
@@Stats4Everyone Thank you, that is much appreciated
Simple Linear Regression - Discussion of the Normality Assumption
12:43
Least Square Estimators - Variance of Estimators, b0 and b1, Proof
30:11
Try this prank with your friends 😂 @karina-kola
00:18
Andrey Grechka
Рет қаралды 6 МЛН
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 14 МЛН
Simple Linear Regression - Partitioning Total Variability PROOF
18:38
Maximum Likelihood Estimation of Parameters in Simple Linear Regression Model
26:23
Linear Regression Analysis and Forecasting
Рет қаралды 26 М.
Least Square Estimators - Explaining and deriving
20:38
Stats4Everyone
Рет қаралды 12 М.
Maximum Likelihood Estimation - Linear regression
26:09
An Cao
Рет қаралды 3,1 М.
Maximum Likelihood Estimation ... MADE EASY!!!
9:12
Learn Statistics with Brian
Рет қаралды 28 М.
Likelihood | Log likelihood | Sufficiency | Multiple parameters
28:24
zedstatistics
Рет қаралды 173 М.
Machine learning - Maximum likelihood and linear regression
1:14:01
Nando de Freitas
Рет қаралды 111 М.
Least Squares vs Maximum Likelihood
4:49
DataMListic
Рет қаралды 18 М.
Maximum Likelihood, clearly explained!!!
6:12
StatQuest with Josh Starmer
Рет қаралды 1,4 МЛН