My solution was to inspect sqrt(x)+sqrt(x+2) in power of 2.... Once you open the parentheses, you get 2 of what you had in the original expression. That's about it
@josepherhardt1642 күн бұрын
Yeah, somebody pinch me. Actually worked this out ahead of viewing, in only about 5 lines of math. And no, I did not think "Simplifying an Interesting Radical" was about analyzing Jerry Rubin or Timothy Leary. ;)
@rainerzufall423 күн бұрын
Really enjoyed the second method!
@SyberMath3 күн бұрын
Glad you liked it!
@rainerzufall423 күн бұрын
@@SyberMath It's quite elegant (and advanced).
@bobbyheffley49553 күн бұрын
Negative x values yield imaginary numbers.
@aesthetics_ai2 күн бұрын
i felt porud that i had the idea to make it in the beginning +1-1 to make it x^2 +2x +1 - 1 = (x+1)^2 - 1 then consider 1=1^2 thus making ( x+1)^2 - 1^2 = (x+1-1)(x+1+1) and it was all round to x^2 + 2x but yet good for a beginner i guess hehe
@calculusmethods3 күн бұрын
Good methods
@SyberMath3 күн бұрын
Many many thanks
@scottleung95873 күн бұрын
Nice!
@Abdurhman_English3 күн бұрын
The second method made my head spin 😅.
@SyberMath3 күн бұрын
It's a tough one, but I think it's worth the effort! 😉
@Christopher-e7o3 күн бұрын
X,+2×+5=8
@Don-Ensley3 күн бұрын
problem Simplify √[ x+1+√(x² +2x) ] Let √[ x+1+√(x² +2x) ] = √a + √b Square. x+1+√(x² +2x) = a+b+√(4ab) Make a system of equations. x + 1 = a + b x² + 2 x = 4 a b b = x + 1 - a Substitute into second equation. x² + 2 x = 4 a (x + 1 - a) Solve for a. x² + 2 x = 4 a x + 4 a - 4 a² Rearrange into standard form as a quadratic in a. 4a²-4(x+1) a + x² + 2x = 0 Use the quadratic formula. a = { 4(x+1) ± 4 } / 8 = { (x+1) ± 1 } / 2 = { (x+1) ± 1 } / 2 = (x + 2)/2, x / 2 b = x + 1 - a = x + 1 -(x + 2)/2, x + 1 - x/2 = x / 2, ( x + 2 ) / 2 √[ x+1+√(x² +2x) ] = √a + √b Since addition is symmetric, the radical simplifies to √[ x+1+√(x² +2x) ] = √(x / 2) + √[(x + 2)/2] = [√ x + √ (x+2)]/ √2 answer √[ x+1+√(x² +2x) ] = √(x/2) + √(x/2+1)