Sir Andrew Wiles - The 2016 Abel Prize Laureate

  Рет қаралды 59,574

The Abel Prize

The Abel Prize

Күн бұрын

Пікірлер: 73
@TG-ju3nd
@TG-ju3nd 11 ай бұрын
There is something about him that really captures me, the gentle smile and eyes, the quiet observation and the manner he explains his ideas. Amazing person, Mr. Wiles is.
@EEFilm2010
@EEFilm2010 8 жыл бұрын
The music is an original composition for this short film by Arthur Khayrullin- young Russian composer.
@henrywilliams3919
@henrywilliams3919 7 жыл бұрын
Do you have a link to the song?
@rudyardwalker9113
@rudyardwalker9113 4 жыл бұрын
@@henrywilliams3919 I'm 3 years late but I've got it if you still want it.
@mariangloser8382
@mariangloser8382 4 жыл бұрын
@@rudyardwalker9113 i'd really appreciate it if you'd give a link or something.
@rudyardwalker9113
@rudyardwalker9113 4 жыл бұрын
@@mariangloser8382 Seems to come from the same artist although I'm not certain if it's the full thing. kzbin.info/www/bejne/f6XIkGyjad2ZbJI
@mehmetefe1377
@mehmetefe1377 Жыл бұрын
If you still have it, can you send me please?
@dadt8009
@dadt8009 2 жыл бұрын
Can anyone imagine how does it feel like to study for a degree at Oxford, then 40 years later they name a new building of the department after you, and you go to work there everyday.
@AhmadKhan-dn6yh
@AhmadKhan-dn6yh Жыл бұрын
One of the great geniuses of our time
@albernererhelge
@albernererhelge 8 жыл бұрын
somehow, Andrew Wiles always looked much older than he is in fact.
@albernererhelge
@albernererhelge 4 жыл бұрын
MrVM1980 thank you, same to you!
@soumyaj4799
@soumyaj4799 4 жыл бұрын
Legends walk among us.
@smangalisomhlongo5707
@smangalisomhlongo5707 4 жыл бұрын
The greatest mathematician of our time
@rudyardwalker9113
@rudyardwalker9113 4 жыл бұрын
Ja
@dadt8009
@dadt8009 2 жыл бұрын
He will be remembered for as long as humans are still around and do mathematics. When aliens arrive they will compare their proof and Wiles', and find that they are the same.
@UCFc1XDsWoHaZmXom2KVxvuA
@UCFc1XDsWoHaZmXom2KVxvuA 3 жыл бұрын
2:56 what he does here is just as impressive as well as the proof though
@benjaminandersson2572
@benjaminandersson2572 2 жыл бұрын
Is that him?
@theimmux3034
@theimmux3034 7 ай бұрын
no
@daug27
@daug27 8 жыл бұрын
3:09 !! he is certainly working on some other big, big, problem. :)
@prajnaprajna1923
@prajnaprajna1923 7 жыл бұрын
After 3 centuries a vietnamese old man solve Fermat in only page and any body can understand it solve Fermat in digital age, just one internet site I think I've found the real face of piere de Fermat in a dreaming math Define Sx=1+2^2+3^2+4^2+....+x^2.=x(x+1)(2x+1)/6=(2x^3+3x^2+x)/6 Sy=1+2^2+3^2+4^2+....+y^2=y(y+1)(2y+1)/6=(2y^3+3y^2+y)/6 Sz=1+2^2+3^2+4^2+....+z^2=z(z+1)(2z+1)/6=(2z^3+3z^2+z)/6 So 2x^3=6Sx-3x^2-x 2y^3=6Sy-3y^2-y 2z^3=6Sz-3z^2-z so x^3=3Sx-3/2x^2-x/2 y^3=3Sy-3/2y^2 - y/2 z^3=3Sz -3/2z^2-z/2 supose x^3+y^3=z^3 3Sx-3/2x^2-x/2+3Sy-3/2y^2 - y/2 - (3Sz -3/2z^2-z/2)=0 or 2Sx-x^2-x/3+2Sy-y^2 - y/3 - (2Sz -z^2-z/3)=0 or 2Sx+2Sy-2Sz-(x^2+y^2-z^2) =(x/3+y/3-z/3) because 2Sx+2Sy-2Sz-(x^2+y^2-z^2) is integer so (x/3+y/3-z/3) is also integer or x=3k y=3h and z=3g K,h,g are integers So 27k^3+27h^3=27g^3. or k^3+h^3=g^3 had had condition x ^ 3 + y ^ 3 = z ^ 3 Unable to meet the two conditions in the same time except x=k,y=h and z=g but x=3k and k=x so x=3x this is impossible conclusive x^3+y^3=/z^3 general Z^n=/x^n+y^n using formular 1^a+2^a+3^a+4^a+....+n^a
@prajnaprajna1923
@prajnaprajna1923 7 жыл бұрын
Thank you very much You had written How can you assert that 2Sx+2Sy-2Sz-(x^2+y^2-z^2) is integer ? :) 2Sx+2Sy-2Sz-(x^2+y^2-z^2) is integer because Sx=1+2^2+3^2+....+x^2 so it is integer. Similar with Sy and Sz. And condition give x,y,z are integers Old writing have mistake. I am sorry. . I write again which have no mistake. Please read it. Define Sx=1+2^2+3^2+4^2+....+x^2.=x(x+1)(2x+1)/6=(2x^3+3x^2+x)/6 Sy=1+2^2+3^2+4^2+....+y^2=y(y+1)(2y+1)/6=(2y^3+3y^2+y)/6 Sz=1+2^2+3^2+4^2+....+z^2=z(z+1)(2z+1)/6=(2z^3+3z^2+z)/6 So 2x^3=6Sx-3x^2-x 2y^3=6Sy-3y^2-y 2z^3=6Sz-3z^2-z so x^3=3Sx-3/2x^2-x/2 y^3=3Sy-3/2y^2 - y/2 z^3=3Sz -3/2z^2-z/2 supose x^3+y^3=z^3 3Sx-3/2x^2-x/2+3Sy-3/2y^2 - y/2 - (3Sz -3/2z^2-z/2)=0 or 2Sx-x^2-x/3+2Sy-y^2 - y/3 - (2Sz -z^2-z/3)=0 or 2Sx+2Sy-2Sz-(x^2+y^2-z^2) =(x/3+y/3-z/3) Sx+S(x-1)+Sy+S(y-1) -Sz -S(z-1)=(x/3+y/3-z/3) Define the function f(x) is Sx+S(x-1) So f(y)=Sy+S(y-1) f(z)=Sz+S(z-1) And g(x )is x/3 so g(y)=y^3 g(z)=z^3 So f(x)+f(y)-f(z)=g(x)+g(y)-g(z) homogeneous them so f(x)=g(x) But this is wrong So x^3+y^3 impossible =z^3
@davidfernandes1642
@davidfernandes1642 7 жыл бұрын
I don't think you can assert that f(x)+f(y)-f(z)=g(x)+g(y)-g(z) implies that f(x) = g(x) and f(y) = g(y) and f(z) = g(z) :(
@prajnaprajna1923
@prajnaprajna1923 7 жыл бұрын
I don't think you can assert that f(x)+f(y)-f(z)=g(x)+g(y)-g(z) implies that f(x) = g(x) and f(y) = g(y) and f(z) = g(z) :( Yes you right. I am sorry I think and write again completely. Define Sx=1+2^2+3^2+4^2+....+x^2.=x(x+1)(2x+1)/6=(2x^3+3x^2+x)/6 Sy=1+2^2+3^2+4^2+....+y^2=y(y+1)(2y+1)/6=(2y^3+3y^2+y)/6 Sz=1+2^2+3^2+4^2+....+z^2=z(z+1)(2z+1)/6=(2z^3+3z^2+z)/6 So 2x^3=6Sx-3x^2-x 2y^3=6Sy-3y^2-y 2z^3=6Sz-3z^2-z so x^3=3Sx-3/2x^2-x/2 y^3=3Sy-3/2y^2 - y/2 z^3=3Sz -3/2z^2-z/2 supose x^3+y^3=z^3 3Sx-3/2x^2-x/2+3Sy-3/2y^2 - y/2 - (3Sz -3/2z^2-z/2)=0 or 2Sx-x^2-x/3+2Sy-y^2 - y/3 - (2Sz -z^2-z/3)=0 or 2Sx+2Sy-2Sz-(x^2+y^2-z^2) =(x/3+y/3-z/3) So (2Sx+2Sy-2Sz) - (x/3+y/3-z/3)=(x^2+y^2-z^2) this tell that (x^2+y^2-z^2) is a funtion of [ (x/3+y/3-z/3 and (2Sx+2Sy-2Sz)] And a other way to know x^2+y^2-z^2 follow x+y- z because (x+y)^2=x^2+y^2+2xy (x+y-z)^2=(x+y)^2+z^2-2z(x+y)=x^2+y^2+2xy+z^2-2z(x+y=x^2+y^2-z^2+2xy-2z(x+y +3z^2 So (x^2+y^2 - z^2)=(x+y-z)^2+2xy-2z(x+y +3z^2 This tell that (x^2+y^2 - z^2) is a function of [ (x+y-z)^2 and 2xy-2z(x+y +3z^2] (x^2+y^2-z^2) is a funtion of [ (x/3+y/3-z/3 and (2Sx+2Sy-2Sz)] And (x^2+y^2 - z^2) of [ (x+y-z)^2 and 2xy-2z(x+y +3z^2] Can not satify two conditions in a same time. note first function have no xy,zx and zy Second funtion have
@davidfernandes1642
@davidfernandes1642 7 жыл бұрын
Well, I think you're not very sure of your results, trying this and that approach. If you think you are really in the verge of a major result (which would be astonishing, I should say) I advise you to work on that proof carefully and not just throw attempts. ;) This is not a try/error endeavor, or at least not in a youtube comments box, were typically people doesn't have so much free time to work on partial and not so thought results. But hey; go for it.
@neelotpalsaikia930
@neelotpalsaikia930 5 жыл бұрын
I had been reading the chapter on Abel in ‘Man of Mathematics’ just when i searched for related videos and found this one.
@abhisheksoni9774
@abhisheksoni9774 8 ай бұрын
Can you share please
@tejasnatu90
@tejasnatu90 8 жыл бұрын
Music please ?? I want to have a last go at Birch Swinnerton Dyer .. my goodness .. ! bow at your feet Sir ..
@chrisobber5604
@chrisobber5604 11 ай бұрын
2:57 man, for a blink moment I thought it was him, thinking like "how could one man possess so much awesomeness"... guess he's awesome enough already. :D
@78anurag
@78anurag 2 жыл бұрын
If I was him, I would be convinced I'm god himself. He's so down to earth, respect.
@DC-zi6se
@DC-zi6se Жыл бұрын
​@@RoadMLin STEM/philosophy fields you cannot. In other fields... Not so sure.
@henrywilliams3919
@henrywilliams3919 7 жыл бұрын
If anyone has a link to the song, I'd really appreciate it if you could post it here
@souvikchatterjee5105
@souvikchatterjee5105 4 жыл бұрын
Prof.Wiles is a great mathematician.
@parkerd2154
@parkerd2154 8 жыл бұрын
By little creature, I assume he means a cicada!
@backupaccount9263
@backupaccount9263 6 жыл бұрын
He literally said it in the video lol.
@xxnotmuchxx
@xxnotmuchxx 4 жыл бұрын
@@backupaccount9263 i didnt heard it
@backupaccount9263
@backupaccount9263 4 жыл бұрын
@@xxnotmuchxx 1:35
@emilhaugen1201
@emilhaugen1201 8 жыл бұрын
What's the music piece called?
@prajnaprajna1923
@prajnaprajna1923 7 жыл бұрын
Andrew wiles real genius But i just prove fo happy in math Please read it, that is a short message about Flt Define Sx=1+2^2+3^2+4^2+....+x^2.=x(x+1)(2x+1)/6=(2x^3+3x^2+x)/6 Sy=1+2^2+3^2+4^2+....+y^2=y(y+1)(2y+1)/6=(2y^3+3y^2+y)/6 Sz=1+2^2+3^2+4^2+....+z^2=z(z+1)(2z+1)/6=(2z^3+3z^2+z)/6 So 2x^3=6Sx-3x^2-x 2y^3=6Sy-3y^2-y 2z^3=6Sz-3z^2-z so x^3=3Sx-3/2x^2-x/2 y^3=3Sy-3/2y^2 - y/2 z^3=3Sz -3/2z^2-z/2 suppose x^3+y^3=z^3 3Sx-3/2x^2-x/2+3Sy-3/2y^2 - y/2 - (3Sz -3/2z^2-z/2)=0 or 2Sx-x^2-x/3+2Sy-y^2 - y/3 - (2Sz -z^2-z/3)=0 or 2Sx+2Sy-2Sz-(x^2+y^2-z^2) =(x/3+y/3-z/3) So (2Sx+2Sy-2Sz) - (x/3+y/3-z/3)=(x^2+y^2-z^2) this tell that (x^2+y^2-z^2) is a function of [ (x/3+y/3-z/3 and (2Sx+2Sy-2Sz)] because (x+y)^2=x^2+y^2+2xy (x+y-z)^2=(x+y)^2+z^2-2z(x+y)=x^2+y^2+2xy+z^2-2z(x+y=x^2+y^2-z^2+2xy-2z(x+y +3z^2 So (x^2+y^2 - z^2)=(x+y-z)^2+2xy-2z(x+y +3z^2 This tell that (x^2+y^2 - z^2) is a function of [ (x+y-z)^2 and 2xy-2z(x+y +3z^2] Had had first (x^2+y^2-z^2) is a funtion of [ (x+y-z)/3 and (2Sx+2Sy-2Sz)] and more have another function (x^2+y^2 - z^2) is a funtion of [ (x+y-z)^2 and 2xy-2z(x+y )+3z^2] note first function have no xy,zx and zy Second funtion have. It point out that (x ^ 2 + y ^ 2 - z ^ 2) is not only followas the (x, y and z) but also (x ^ 2 + y ^ 2 - z ^ 2) acording individual x. Cannot satisfy two functions different in a same time on this case.
@benefactor4309
@benefactor4309 7 жыл бұрын
2:30
@johnfredysalasrodriguez3722
@johnfredysalasrodriguez3722 7 жыл бұрын
sir andrew wiles genio de las matematicas, un hombre admirable............mis mas grandes respetos
@shiffterCL
@shiffterCL 7 жыл бұрын
Please don't tell me this was the full short film...
@shivamr9232
@shivamr9232 10 ай бұрын
If one has a too good a memory, than one becomes a logician/philosopher
@joaopereiraneto1620
@joaopereiraneto1620 3 жыл бұрын
O revolvedor de problemas do entretenimento
@Walterwhite00000
@Walterwhite00000 11 ай бұрын
Nice style
@brunocesar3835
@brunocesar3835 3 жыл бұрын
Isso que é nível máximo da matemática
@albabahmed7670
@albabahmed7670 Жыл бұрын
He is a very intersting scientist
@fitofito1001
@fitofito1001 6 ай бұрын
He looks exactly like a scholar
@kenichimori8533
@kenichimori8533 7 жыл бұрын
Ah bell
@이찬호-y8d
@이찬호-y8d 5 жыл бұрын
I love you ♥️
@tensevo
@tensevo 3 жыл бұрын
Is it possible to have 3 or 4 minutes with this man and not have some major insight into the world?
@davidwilkie9551
@davidwilkie9551 Жыл бұрын
The Universe has a prime-cofactor quantization superposition cause-effect format, with/to which we respond by/to recognise mathematical concepts, altogether.
@cubong9826
@cubong9826 7 жыл бұрын
Who the fuck disliked this
@sagarpuri7838
@sagarpuri7838 4 жыл бұрын
Nice Hair
@cromerbeach
@cromerbeach 7 жыл бұрын
Seems like a nice guy but needs to see the inside of the dental office
@fightingforcatalonia
@fightingforcatalonia 2 жыл бұрын
Good teeth
Interview with Andrew Wiles
22:22
The Abel Prize
Рет қаралды 23 М.
Andrew Wiles - The Abel Prize interview 2016
59:02
The Abel Prize
Рет қаралды 206 М.
🎈🎈🎈😲 #tiktok #shorts
0:28
Byungari 병아리언니
Рет қаралды 4,5 МЛН
How to have fun with a child 🤣 Food wrap frame! #shorts
0:21
BadaBOOM!
Рет қаралды 17 МЛН
Yves Meyer - The 2017 Abel Prize Laureate
3:38
The Abel Prize
Рет қаралды 18 М.
Fields Medal - Caucher Birkar - ICM2018
5:22
Rio ICM2018
Рет қаралды 169 М.
Andrew Wiles Acceptance Speech - The Abel Prize
6:59
The Abel Prize
Рет қаралды 8 М.
Michel Talagrand - the 2024 Abel Prize laureate
5:17
The Abel Prize
Рет қаралды 24 М.
The Shaw Prize in Mathematical Sciences 2005
10:24
The Shaw Prize
Рет қаралды 10 М.
Fermat's Last Theorem - Numberphile
9:31
Numberphile
Рет қаралды 2,3 МЛН
Andrew Wiles: Fermat's Last theorem: abelian and non-abelian approaches
53:12
Dennis Sullivan -  the 2022 Abel Prize Laureate
3:38
The Abel Prize
Рет қаралды 36 М.
Karen K. Uhlenbeck - The 2019 Abel Prize Laureate
3:19
The Abel Prize
Рет қаралды 18 М.