There is something about him that really captures me, the gentle smile and eyes, the quiet observation and the manner he explains his ideas. Amazing person, Mr. Wiles is.
@EEFilm20108 жыл бұрын
The music is an original composition for this short film by Arthur Khayrullin- young Russian composer.
@henrywilliams39197 жыл бұрын
Do you have a link to the song?
@rudyardwalker91134 жыл бұрын
@@henrywilliams3919 I'm 3 years late but I've got it if you still want it.
@mariangloser83824 жыл бұрын
@@rudyardwalker9113 i'd really appreciate it if you'd give a link or something.
@rudyardwalker91134 жыл бұрын
@@mariangloser8382 Seems to come from the same artist although I'm not certain if it's the full thing. kzbin.info/www/bejne/f6XIkGyjad2ZbJI
@mehmetefe1377 Жыл бұрын
If you still have it, can you send me please?
@dadt80092 жыл бұрын
Can anyone imagine how does it feel like to study for a degree at Oxford, then 40 years later they name a new building of the department after you, and you go to work there everyday.
@AhmadKhan-dn6yh Жыл бұрын
One of the great geniuses of our time
@albernererhelge8 жыл бұрын
somehow, Andrew Wiles always looked much older than he is in fact.
@albernererhelge4 жыл бұрын
MrVM1980 thank you, same to you!
@soumyaj47994 жыл бұрын
Legends walk among us.
@smangalisomhlongo57074 жыл бұрын
The greatest mathematician of our time
@rudyardwalker91134 жыл бұрын
Ja
@dadt80092 жыл бұрын
He will be remembered for as long as humans are still around and do mathematics. When aliens arrive they will compare their proof and Wiles', and find that they are the same.
@UCFc1XDsWoHaZmXom2KVxvuA3 жыл бұрын
2:56 what he does here is just as impressive as well as the proof though
@benjaminandersson25722 жыл бұрын
Is that him?
@theimmux30347 ай бұрын
no
@daug278 жыл бұрын
3:09 !! he is certainly working on some other big, big, problem. :)
@prajnaprajna19237 жыл бұрын
After 3 centuries a vietnamese old man solve Fermat in only page and any body can understand it solve Fermat in digital age, just one internet site I think I've found the real face of piere de Fermat in a dreaming math Define Sx=1+2^2+3^2+4^2+....+x^2.=x(x+1)(2x+1)/6=(2x^3+3x^2+x)/6 Sy=1+2^2+3^2+4^2+....+y^2=y(y+1)(2y+1)/6=(2y^3+3y^2+y)/6 Sz=1+2^2+3^2+4^2+....+z^2=z(z+1)(2z+1)/6=(2z^3+3z^2+z)/6 So 2x^3=6Sx-3x^2-x 2y^3=6Sy-3y^2-y 2z^3=6Sz-3z^2-z so x^3=3Sx-3/2x^2-x/2 y^3=3Sy-3/2y^2 - y/2 z^3=3Sz -3/2z^2-z/2 supose x^3+y^3=z^3 3Sx-3/2x^2-x/2+3Sy-3/2y^2 - y/2 - (3Sz -3/2z^2-z/2)=0 or 2Sx-x^2-x/3+2Sy-y^2 - y/3 - (2Sz -z^2-z/3)=0 or 2Sx+2Sy-2Sz-(x^2+y^2-z^2) =(x/3+y/3-z/3) because 2Sx+2Sy-2Sz-(x^2+y^2-z^2) is integer so (x/3+y/3-z/3) is also integer or x=3k y=3h and z=3g K,h,g are integers So 27k^3+27h^3=27g^3. or k^3+h^3=g^3 had had condition x ^ 3 + y ^ 3 = z ^ 3 Unable to meet the two conditions in the same time except x=k,y=h and z=g but x=3k and k=x so x=3x this is impossible conclusive x^3+y^3=/z^3 general Z^n=/x^n+y^n using formular 1^a+2^a+3^a+4^a+....+n^a
@prajnaprajna19237 жыл бұрын
Thank you very much You had written How can you assert that 2Sx+2Sy-2Sz-(x^2+y^2-z^2) is integer ? :) 2Sx+2Sy-2Sz-(x^2+y^2-z^2) is integer because Sx=1+2^2+3^2+....+x^2 so it is integer. Similar with Sy and Sz. And condition give x,y,z are integers Old writing have mistake. I am sorry. . I write again which have no mistake. Please read it. Define Sx=1+2^2+3^2+4^2+....+x^2.=x(x+1)(2x+1)/6=(2x^3+3x^2+x)/6 Sy=1+2^2+3^2+4^2+....+y^2=y(y+1)(2y+1)/6=(2y^3+3y^2+y)/6 Sz=1+2^2+3^2+4^2+....+z^2=z(z+1)(2z+1)/6=(2z^3+3z^2+z)/6 So 2x^3=6Sx-3x^2-x 2y^3=6Sy-3y^2-y 2z^3=6Sz-3z^2-z so x^3=3Sx-3/2x^2-x/2 y^3=3Sy-3/2y^2 - y/2 z^3=3Sz -3/2z^2-z/2 supose x^3+y^3=z^3 3Sx-3/2x^2-x/2+3Sy-3/2y^2 - y/2 - (3Sz -3/2z^2-z/2)=0 or 2Sx-x^2-x/3+2Sy-y^2 - y/3 - (2Sz -z^2-z/3)=0 or 2Sx+2Sy-2Sz-(x^2+y^2-z^2) =(x/3+y/3-z/3) Sx+S(x-1)+Sy+S(y-1) -Sz -S(z-1)=(x/3+y/3-z/3) Define the function f(x) is Sx+S(x-1) So f(y)=Sy+S(y-1) f(z)=Sz+S(z-1) And g(x )is x/3 so g(y)=y^3 g(z)=z^3 So f(x)+f(y)-f(z)=g(x)+g(y)-g(z) homogeneous them so f(x)=g(x) But this is wrong So x^3+y^3 impossible =z^3
@davidfernandes16427 жыл бұрын
I don't think you can assert that f(x)+f(y)-f(z)=g(x)+g(y)-g(z) implies that f(x) = g(x) and f(y) = g(y) and f(z) = g(z) :(
@prajnaprajna19237 жыл бұрын
I don't think you can assert that f(x)+f(y)-f(z)=g(x)+g(y)-g(z) implies that f(x) = g(x) and f(y) = g(y) and f(z) = g(z) :( Yes you right. I am sorry I think and write again completely. Define Sx=1+2^2+3^2+4^2+....+x^2.=x(x+1)(2x+1)/6=(2x^3+3x^2+x)/6 Sy=1+2^2+3^2+4^2+....+y^2=y(y+1)(2y+1)/6=(2y^3+3y^2+y)/6 Sz=1+2^2+3^2+4^2+....+z^2=z(z+1)(2z+1)/6=(2z^3+3z^2+z)/6 So 2x^3=6Sx-3x^2-x 2y^3=6Sy-3y^2-y 2z^3=6Sz-3z^2-z so x^3=3Sx-3/2x^2-x/2 y^3=3Sy-3/2y^2 - y/2 z^3=3Sz -3/2z^2-z/2 supose x^3+y^3=z^3 3Sx-3/2x^2-x/2+3Sy-3/2y^2 - y/2 - (3Sz -3/2z^2-z/2)=0 or 2Sx-x^2-x/3+2Sy-y^2 - y/3 - (2Sz -z^2-z/3)=0 or 2Sx+2Sy-2Sz-(x^2+y^2-z^2) =(x/3+y/3-z/3) So (2Sx+2Sy-2Sz) - (x/3+y/3-z/3)=(x^2+y^2-z^2) this tell that (x^2+y^2-z^2) is a funtion of [ (x/3+y/3-z/3 and (2Sx+2Sy-2Sz)] And a other way to know x^2+y^2-z^2 follow x+y- z because (x+y)^2=x^2+y^2+2xy (x+y-z)^2=(x+y)^2+z^2-2z(x+y)=x^2+y^2+2xy+z^2-2z(x+y=x^2+y^2-z^2+2xy-2z(x+y +3z^2 So (x^2+y^2 - z^2)=(x+y-z)^2+2xy-2z(x+y +3z^2 This tell that (x^2+y^2 - z^2) is a function of [ (x+y-z)^2 and 2xy-2z(x+y +3z^2] (x^2+y^2-z^2) is a funtion of [ (x/3+y/3-z/3 and (2Sx+2Sy-2Sz)] And (x^2+y^2 - z^2) of [ (x+y-z)^2 and 2xy-2z(x+y +3z^2] Can not satify two conditions in a same time. note first function have no xy,zx and zy Second funtion have
@davidfernandes16427 жыл бұрын
Well, I think you're not very sure of your results, trying this and that approach. If you think you are really in the verge of a major result (which would be astonishing, I should say) I advise you to work on that proof carefully and not just throw attempts. ;) This is not a try/error endeavor, or at least not in a youtube comments box, were typically people doesn't have so much free time to work on partial and not so thought results. But hey; go for it.
@neelotpalsaikia9305 жыл бұрын
I had been reading the chapter on Abel in ‘Man of Mathematics’ just when i searched for related videos and found this one.
@abhisheksoni97748 ай бұрын
Can you share please
@tejasnatu908 жыл бұрын
Music please ?? I want to have a last go at Birch Swinnerton Dyer .. my goodness .. ! bow at your feet Sir ..
@chrisobber560411 ай бұрын
2:57 man, for a blink moment I thought it was him, thinking like "how could one man possess so much awesomeness"... guess he's awesome enough already. :D
@78anurag2 жыл бұрын
If I was him, I would be convinced I'm god himself. He's so down to earth, respect.
@DC-zi6se Жыл бұрын
@@RoadMLin STEM/philosophy fields you cannot. In other fields... Not so sure.
@henrywilliams39197 жыл бұрын
If anyone has a link to the song, I'd really appreciate it if you could post it here
@souvikchatterjee51054 жыл бұрын
Prof.Wiles is a great mathematician.
@parkerd21548 жыл бұрын
By little creature, I assume he means a cicada!
@backupaccount92636 жыл бұрын
He literally said it in the video lol.
@xxnotmuchxx4 жыл бұрын
@@backupaccount9263 i didnt heard it
@backupaccount92634 жыл бұрын
@@xxnotmuchxx 1:35
@emilhaugen12018 жыл бұрын
What's the music piece called?
@prajnaprajna19237 жыл бұрын
Andrew wiles real genius But i just prove fo happy in math Please read it, that is a short message about Flt Define Sx=1+2^2+3^2+4^2+....+x^2.=x(x+1)(2x+1)/6=(2x^3+3x^2+x)/6 Sy=1+2^2+3^2+4^2+....+y^2=y(y+1)(2y+1)/6=(2y^3+3y^2+y)/6 Sz=1+2^2+3^2+4^2+....+z^2=z(z+1)(2z+1)/6=(2z^3+3z^2+z)/6 So 2x^3=6Sx-3x^2-x 2y^3=6Sy-3y^2-y 2z^3=6Sz-3z^2-z so x^3=3Sx-3/2x^2-x/2 y^3=3Sy-3/2y^2 - y/2 z^3=3Sz -3/2z^2-z/2 suppose x^3+y^3=z^3 3Sx-3/2x^2-x/2+3Sy-3/2y^2 - y/2 - (3Sz -3/2z^2-z/2)=0 or 2Sx-x^2-x/3+2Sy-y^2 - y/3 - (2Sz -z^2-z/3)=0 or 2Sx+2Sy-2Sz-(x^2+y^2-z^2) =(x/3+y/3-z/3) So (2Sx+2Sy-2Sz) - (x/3+y/3-z/3)=(x^2+y^2-z^2) this tell that (x^2+y^2-z^2) is a function of [ (x/3+y/3-z/3 and (2Sx+2Sy-2Sz)] because (x+y)^2=x^2+y^2+2xy (x+y-z)^2=(x+y)^2+z^2-2z(x+y)=x^2+y^2+2xy+z^2-2z(x+y=x^2+y^2-z^2+2xy-2z(x+y +3z^2 So (x^2+y^2 - z^2)=(x+y-z)^2+2xy-2z(x+y +3z^2 This tell that (x^2+y^2 - z^2) is a function of [ (x+y-z)^2 and 2xy-2z(x+y +3z^2] Had had first (x^2+y^2-z^2) is a funtion of [ (x+y-z)/3 and (2Sx+2Sy-2Sz)] and more have another function (x^2+y^2 - z^2) is a funtion of [ (x+y-z)^2 and 2xy-2z(x+y )+3z^2] note first function have no xy,zx and zy Second funtion have. It point out that (x ^ 2 + y ^ 2 - z ^ 2) is not only followas the (x, y and z) but also (x ^ 2 + y ^ 2 - z ^ 2) acording individual x. Cannot satisfy two functions different in a same time on this case.
@benefactor43097 жыл бұрын
2:30
@johnfredysalasrodriguez37227 жыл бұрын
sir andrew wiles genio de las matematicas, un hombre admirable............mis mas grandes respetos
@shiffterCL7 жыл бұрын
Please don't tell me this was the full short film...
@shivamr923210 ай бұрын
If one has a too good a memory, than one becomes a logician/philosopher
@joaopereiraneto16203 жыл бұрын
O revolvedor de problemas do entretenimento
@Walterwhite0000011 ай бұрын
Nice style
@brunocesar38353 жыл бұрын
Isso que é nível máximo da matemática
@albabahmed7670 Жыл бұрын
He is a very intersting scientist
@fitofito10016 ай бұрын
He looks exactly like a scholar
@kenichimori85337 жыл бұрын
Ah bell
@이찬호-y8d5 жыл бұрын
I love you ♥️
@tensevo3 жыл бұрын
Is it possible to have 3 or 4 minutes with this man and not have some major insight into the world?
@davidwilkie9551 Жыл бұрын
The Universe has a prime-cofactor quantization superposition cause-effect format, with/to which we respond by/to recognise mathematical concepts, altogether.
@cubong98267 жыл бұрын
Who the fuck disliked this
@sagarpuri78384 жыл бұрын
Nice Hair
@cromerbeach7 жыл бұрын
Seems like a nice guy but needs to see the inside of the dental office