Started the video, paused, went to my marker board and solved it! Then skipped to the end and I saw that I got it right. First time I have solved one of these on my own. Your help has been HUGE! Thank you!
@blackpenredpen6 жыл бұрын
I am very glad to hear this!!!!
@gigispence60115 жыл бұрын
Spent the last week panicking about Laplace transforms - all of that anxiety vanished after watching this video! Thank you
@blackpenredpen5 жыл бұрын
Glad to hear!!
@ahmed_429410 ай бұрын
Seriously one of the best teachers I've ever encountered both on youtube and real life. I salute you! Thank you for explaining every detail of your solving and making sure we understand every step you take
@Conditional_Finality Жыл бұрын
I dont really know why professors in my uni just does not go into this much depth into explaining a single example. The way he teaches me reminds me of my high school teacher who used to make complex problems easily digestible.
@OussamaAbuUmar4 жыл бұрын
You just taught me more than my professor taught me in a whole semester❤
@bizzysiru5 жыл бұрын
i am a student on uni. at south korea. thx your class. it a big help for me.
@sanmuga2776 жыл бұрын
Dude You are the best !!!!!! I owe You 20 Marks!!!
@blackpenredpen6 жыл бұрын
Thank you!!!!!!!
@jemcel03977 жыл бұрын
I want to comment that you can use residue method to get A/s. To do so, we will consider P(s) = (s^3 + 2s^2 + 1)/(s^2 + 4). Then, we can differentiate P(s) but we have to divide it by n! where n is the number of times differentiation can occur. (In this case, n= 1) because s is only repeated once. P'(s) = [(3s^2 + 2s)(s^2 + 4) - 2s(s^3 + 2s^2 + 1)]/(s^2 + 4)^2 From the previous cover-up: s = 0 so we have P'(0). Then, you can plug 0 into your function. After applying differentiation. You'll be surprised you'll get the same answer for A.
@xuhanzhen81266 жыл бұрын
学到了啊 待定系数还能这么拆 很棒的细节讲解
@ChefSalad6 жыл бұрын
You can use cover-up to solve for C and D. Just make s=2i and substitute in. You get 2i+(-7)/(-4)=2i*C + D, therefore D = 7/4 and 2i=2i*C, thus C = 1. BAM!
@bernaskojohnarthur36606 жыл бұрын
Your tutorials are the best just that I'd like to comment on this and a previous video about this same IVP that you should note the way you write your (Y and y). It conflicts as to know which is the laplace and the inverse laplace, Just to help amateur like me. Thank you for your best explanation.
@aanchalchaudhary165 жыл бұрын
your video makes concept crystal clear
@user-wu8yq1rb9t2 жыл бұрын
Thank you so much dear Teacher 💖
@Zonnymaka7 жыл бұрын
Just for the sake of trying the convolution formula i solved the partial fractions s/(4+s^2) + 2/(4+s^2) + 1/[s^2(4+s^4)]. Nice!
@5stepshred3006 жыл бұрын
Sorry man but I had to.... Pause the video to comment and give you a thumbs up! So glad I subscribed, great work!! Thank you!!
@andersjohnson90654 жыл бұрын
Watching this during my Calc 4 exam, thank you very much my dude
@latrellebrown79165 жыл бұрын
I don't sub often, I am about to graduate this year and you earned it!
@skshabbir10126 жыл бұрын
Lots of love for you sir.. 😍😍😍 From Bangladesh.. Your method was super easy to get the problem..
@MrSimmies Жыл бұрын
Absolutely perfect job. Thanks!
@marlenabigailrojogarcia55525 жыл бұрын
Me gustaría entenderte en el idioma pero observando tu procedimiento me a ayudado, gracias
@wisphyr Жыл бұрын
this guy saved my life
@yeyito36765 жыл бұрын
thank you so much for explaining where the partial fraction decomposition comes from!
@braskcovroldinin88162 жыл бұрын
This vid helped me more then books
@MrKristian2522 жыл бұрын
Thanks a ton, now I feel very motivated
@rutgerlight74925 жыл бұрын
You're a good tutor! Im about to comment because i got confused in the A/s +B/s2 ... but you discussed it well ahhaha slow clap*
@ayandamtolo83125 жыл бұрын
Bro thanks so much for all youve taught me, in this case wouldn't it have been easier to solve using method of unconfirmed...
@wync22036 жыл бұрын
woaahh i never knew laplace is this easy..thank you sir, tutorial appreciated!
@1StraightPath2Islam5 жыл бұрын
Great job man, really good explanation. I think whats so hard to understand is how the denominator is split up into A, B etc. I've taken earlier courses that covered it, but not in the same extend that these exercises need.
@harleyspeedthrust40133 жыл бұрын
look up "partial fraction decomposition"
@VivianBacanto-i9w26 күн бұрын
Hey at time 12:48, it should be s / s^2 + 2^2, you missing out s at the numerator on the 2nd inverse Laplace Term😢.
@tiibrahim57146 жыл бұрын
You've helped me a lot thanks
@petersonkomane26892 жыл бұрын
is there a playlist for this kind of problem's?
@john-athancrow41696 жыл бұрын
Yes, I just said "isn't it?" just like Y O U ! ! !
@blackpenredpen6 жыл бұрын
Yay!!!!!!!
@falkinable6 жыл бұрын
Great work! Technically shouldn’t all of this be multiplied times the unit step function, which would be the same as saying “for t >= 0?”
@ayshaalshamsi83305 жыл бұрын
Thank you so much!😭😭💕💕
@cjdiaz10995 жыл бұрын
this deserves more likes than those useless travel vlogs
@damiandassen77636 жыл бұрын
5:00 20 seconds does not equal 50 seconds unless we are moving fast away from each other and relativistic effects take over.
@ronaldrosete40864 жыл бұрын
I can't find your Laplace playlist.
@john-athancrow41696 жыл бұрын
If that s³+2s²+1 was s³+2s²+s, you would do: s³+2s²+s=s(s²+2s+1)=s(s+1)²
@HandlingSmilus2 жыл бұрын
Math is beautiful
@vahdetdelikaya16962 жыл бұрын
Love this!
@swkit12528 күн бұрын
I learned this in process control
@mcqueenweiyang38553 жыл бұрын
may i know why so i have to add CS + D and your peevious dont need?
@carultch Жыл бұрын
For linear terms, you only need a constant for the numerator. For irreducible quadratic terms, you need to set up a linear term for the numerator. If you had an irreducible cubic, you'd use a quadratic term for its numerator. It wouldn't help you very much for either integration or Laplace transforms, but that's what you'd do in concept. In general, the polynomial on the top, is one degree less than the polynomial on the bottom. Sometimes, the linear factor turns out to just be a constant, other times, the linear factor turns out to only be the term with the variable
@ibrahimelosta74224 жыл бұрын
The best
@obeidaalamery10286 жыл бұрын
Very good
@manyielkoth22215 жыл бұрын
As long as you are getting him
@sajjadkareem6085 жыл бұрын
Best way to solve DE is with Laplace Tf
@harleyspeedthrust40133 жыл бұрын
agreed, unless u dont have initial conditions then my favorite way is variation of parameters
@MajedHQ145 жыл бұрын
Is that a microphone
@walter81544 жыл бұрын
your voice is asmr to my ears
@katherinebaloch74196 жыл бұрын
What is the laplace of sint
@carultch Жыл бұрын
1/(s^2 + 1) Cosine has the s up top, sine has the constant.
@davitgurgenidze63074 жыл бұрын
very kind smile
@lucvaniperen39646 жыл бұрын
Bedankt maat!
@Flanlaina4 жыл бұрын
I distinguish my s and my 5 using cursive handwriting
@juniorjay0014 жыл бұрын
wow. thank you
@ServitorSkull2 жыл бұрын
that pen swish doh 15:10. Swag
@edwin9966337 жыл бұрын
Weird thing. My teacher use this equation in our assignment
@xxslysinxx7 жыл бұрын
Did you write your answer in black pen and red pen?
@shirashira88712 жыл бұрын
how we can get D=7/4 like how 2 become 8/4 - 1/4 = 7/4 just how that 2 become 8/4 sorry if my question is so complicated .
@carultch Жыл бұрын
Given: (s^3 + 2*s^2 + 1)/(s^2*(s^2 + 4)) I like to set up the terms for Heaviside coverup first, which in this case is A: A/s^2 + B/s + (C*s + D)/(s^2 + 4) At s=0, cover up s^2, and find A: A = (0+0+1)/(0^2 + 4) = 1/4 Reconstruct: (s^3 + 2*s^2 + 1)/(s^2*(s^2 + 4)) = 1/4/s^2 + B/s + (C*s + D)/(s^2 + 4) Multiply by s, to partially clear the fraction: (s^3 + 2*s^2 + 1)/(s*(s^2 + 4)) = 1/4/s + B + (C*s^2 + D*s)/(s^2 + 4) Take the limit as s goes to infinity, to set up our first equation: 1 = 0 + B + C B = 1 - C Pick two values of s we haven't used yet, to create two more equations. I'll choose s=1 & s = -1 s=1: (1^3 + 2*1^2 + 1)/(1^2*(1^2 + 4)) = 1/4 + B + (C + D)/(1 + 4) 4/5 = 1/4 + B + (C + D)/5 20*B + 4*C + 4*D = 11 s = -1: ((-1)^3 + 2*(-1)^2 + 1)/((-1)^2*((-1)^2 + 4)) = 1/4/(-1)^2 + B/(-1) + (C*(-1) + D)/((-1)^2 + 4) 2/5 = 1/4 + -B + (-C + D)/5 8 = 5 + -20*B + 4*(-C + D) -20*B - 4*C + 4*D = 3 Add equations to cancel B & C terms and solve for D: 8*D = 14 D = 7/4 Use original equations to solve for B&C: 20*B + 4*C + 4*7/4 = 11 5*(1 - C) + C = 1 -4*C + 5 = 1 C = 1 B = 1-1 = 0 Result: 1/4/s^2 + (s + 7/4)/(s^2 + 4)
@hanaa.r_ Жыл бұрын
I don't understand at 6:45
@hanaa.r_ Жыл бұрын
How when 1/4 we put in A
@MrNdog10007 жыл бұрын
Pointing out the seemingly obvious, but you forgot to multiply by 2 inside the cosine inverse LaPlace and the 1/2 outside, so it should be 1/2* cos(2t)
@blackpenredpen7 жыл бұрын
Steven Tucker u only have to do that for sine. Cos is ok
@tarekkhalifa86343 жыл бұрын
ليه حطيت T=1/s^2 ???
@tarekkhalifa86343 жыл бұрын
why ?
@john-athancrow41696 жыл бұрын
Aha! You want to look the 4 as 2², isn't it?
@phindulobidi77095 жыл бұрын
His using 2 markers one hand
@amabellesantos40496 жыл бұрын
Thank you
@syavv75145 жыл бұрын
I love youuuuu
@rashidibrahim9794 жыл бұрын
I found "A" to be 1/2 no zero
@skinnyqueen7896Ай бұрын
you need a lapel
@hakeemnaa2 жыл бұрын
not difficult, but very easy to make a mistake
@rob8766 жыл бұрын
Worst way to solve a linear ODE. How about a non-linear ODE example?
@blackpenredpen6 жыл бұрын
Hi Rob!
@jammcrusader19814 жыл бұрын
lol dude - its about learning the method
@harleyspeedthrust40133 жыл бұрын
dude its just an example to get the hang of laplace transforms chill out dickwad
@AndreSimoni947 жыл бұрын
hm, so you don`t use the +1...
@5stepshred3006 жыл бұрын
Good observation, did you forget to use the +1?
@blackwatch75725 жыл бұрын
hahahahaha temos um ancap por aqui.
@sunainas79065 жыл бұрын
This is so tough
@joshuamitchell3596 жыл бұрын
The way you do partial fractions doesn't make a bit of sense...
@blackpenredpen6 жыл бұрын
Which part confused you?
@joshuamitchell3595 жыл бұрын
@@blackpenredpen Actually, I totally confused myself while I was doing the problem along with you. I missed an "s." It made perfect sense! Sorry about the inconvenience!
@blackpenredpen5 жыл бұрын
Joshua Mitchell I see. 😎
@tjtaneja12855 жыл бұрын
Literally the partial fractions is so unnecessary and it takes up over half the video, without taking the common denominator and keeping it as three seprate fractions we coud have taken the inverse laplace much easier with a VERY easy convolution to solve at the end
@harleyspeedthrust40133 жыл бұрын
yes but in general you want to avoid convolutions. the point of the laplace transform is to solve the problem without actually doing calculus, so if you can find partial fractions then you should do that instead