Solve Quartic Equation - Special Method | Chinese Math Olympiad

  Рет қаралды 20,461

Dr. Wang

Dr. Wang

Күн бұрын

Пікірлер: 49
@DrWangUSA
@DrWangUSA Жыл бұрын
Recommended Videos: Chinese Junior Math Olympiad: kzbin.info/www/bejne/sIKtiol-mqiaibs International Math ContestTaiwan: kzbin.info/www/bejne/oYurZpmeZpJmetk Philippine Math Olympiad (Oral Competition): kzbin.info/www/bejne/jqmWdYqaqpuHgNk Singapore Math Olympiad : kzbin.info/www/bejne/mYPEen5vhKtnp8U German Math Olympiad: kzbin.info/www/bejne/eGqaeXxmo9SlsK8
@qwertyuiop2161
@qwertyuiop2161 Жыл бұрын
My method was to introduce symmetry by subistution u=x+3/2. This creates a biquadratic when expanded which can be easily solved. then solve back for x.
@actions-speak
@actions-speak Жыл бұрын
Same!
@DrWangUSA
@DrWangUSA Жыл бұрын
Thanks for sharing! Symmetry idea is also an important method to solve high degree equations to cancel odd terms.
@DrWangUSA
@DrWangUSA Жыл бұрын
Here is the question in our one of our videos solved using the method you mentioned: kzbin.info/www/bejne/rnLMpal-e51kgJo
@damirdukic
@damirdukic Жыл бұрын
Well, I first immediately saw that "0" was a solution. _(Because 17 = 2^4 + 1^4)._ Then I noticed that there should have been at least one negative solution _(because (-a)^4 = a^4),_ and after a little pondering I saw that that negative solution was "-3". _(Because 1 - 3 = -2 and 2 - 3 = -1.)_ After that, I simply did the expansion (which is actually _not so difficult_ to do here), then I divided the resulting equation first with "2x" and then the result of that division with "x+3". The resulting quadratic equation "x^2 + 3x + 6 = 0" doesn't have any real solutions, so "0" and "-3" are the only real solutions of the initial equation.
@DrWangUSA
@DrWangUSA Жыл бұрын
Nice work! Thanks for sharing.
@avalagum7957
@avalagum7957 11 ай бұрын
This solution is simpler and more intuitive than the one in the video.
@valvalrr
@valvalrr 6 ай бұрын
@@avalagum7957 damn you really thought you did something
@鈞齊
@鈞齊 Жыл бұрын
Recall: a⁴+b⁴+(a+b)⁴=2(a²+ab+b²)² (x+1)⁴+(x+2)⁴=17 => 1⁴+(x+1)⁴+(x+2)⁴=18 => (t²+t+1)²=9, where t=x+1 => t²+t+4>0 , for all t in R t²+t-2=0 => t=1 or -2 => x=0 or -3
@DrWangUSA
@DrWangUSA Жыл бұрын
Nice work and thanks for sharing!
@ZhilinChen-my7tp
@ZhilinChen-my7tp 5 ай бұрын
a+b is not 1
@鈞齊
@鈞齊 5 ай бұрын
@@ZhilinChen-my7tp 1+(x+1)=x+2
@nasrullahhusnan2289
@nasrullahhusnan2289 Жыл бұрын
Note that 17=16+1 =2⁴+1⁴ (x+2)⁴+(x+1)⁴=17 By inspection it is clear that x=0
@DrWangUSA
@DrWangUSA Жыл бұрын
Nice work! X=-3 is also an integer solution. You may need to show that there are no other real number solutions.
@nemesiochupaca5024
@nemesiochupaca5024 10 ай бұрын
@@DrWangUSA With the same observation that the youtuber made, given that it is a quartic, the cases must be considered: (-(x+1))^4 = 2^4 ⇒ -x-1=2 ⇒ x=-3 (-(x+2))^4 = 1^4 ⇒ -x-2=1 ⇒ x=-3 And the other integer solution -3 is also obtained.
@herbertklumpp2969
@herbertklumpp2969 Жыл бұрын
(Y+1)^4 +y^2 = 17 conclude Y^4 +2y^3 +3y^2 +2y -8=0 Y=0 y=-2 are solutions factorizing you get (Y-1)*(Y+2) ( y^2+y+4) =0 the last one has no real solution therefore y=1 or y=-2 conclude x=0 x=-3
@DrWangUSA
@DrWangUSA Жыл бұрын
Great work and thanks for sharing!
@tunneloflight
@tunneloflight Жыл бұрын
Easy. The two terms must be perfect 4th powers. The only numbers satisfying that are 2 and 1. 2^4+1^4 =17. So what values of x result in 1 and 2 inside the 4th powers. (X+1), (X+2). Easy = X=0, and X=-3.
@DrWangUSA
@DrWangUSA Жыл бұрын
Great idea. From given condition, x is a real number. You derived the integer solutions. You may need to show that there is no other real situations.
@tunneloflight
@tunneloflight Жыл бұрын
@@DrWangUSA you are right. As a quartic, there are potentially two other solutions. As two smooth solutions, the two parts sum will be the sum of two shapes that rise symmetrically with increasingly positive or negative values for X+1 and X+2. They are constrained to be within the range of -3 to 0. These would need to be fractions that are themselves perfect 4th power sums. The constraints on that likely rule out a solution. Though I don’t immediately see the constraints that do rule out all solutions. Interesting.
@tunneloflight
@tunneloflight Жыл бұрын
Ah, I see it now. The shape of the curves dictates that the value of the sum will decline as the value of X approaches the two poles at (1, 2), i.e. X values of (-1, -2). And the sum will continue to decline as X approaches the midpoint at -1.5. As a consequence, no real solutions can exist either between the two main solutions (-3, 0), nor at values greater than 1, nor less than -3. The non-imaginary solutions are then constrained to 0 and -3.
@MasterOfCubes2074
@MasterOfCubes2074 Жыл бұрын
Let x+1=t Hence, x+2=x+1+1=t+1 (t+1)⁴+t⁴=17 (t+1)⁴+t⁴-17=0 [(t+1)²]²+t⁴-17=0 [t²+2t+1]²+t⁴-17=0 t⁴+4t³+6t²+4t+1+t⁴-17=0 2t⁴+4t³+6t²+4t-16=0 By factorization 2(t−1)(t+2)(t²+t+4)=0 2(t-1)=0, t=1 (t+2)=0, t=-2 (t²+t+4)=0 a=1 b=1 c=4 D=b²-4ac D=1-4×4×1 D=1-16 D=-15 x=t x = (-b ± √ (D) )/2a t=-1±√( -15)/2 t=-1±i√(15)/2 t is either equal to -(1+i√(15))/2or i√(15)-1/2. We have now 4 roots of this equation t=1 t=-2 t=-(1+i√(15))/2 t=i√(15)-1/2 We know that x+1=t x+1=1 x=0 x+1=-2 x=-3 x+1=-(1+i√(15))/2 x=(-(1+i√(15))/2)-1 x=-(3+i√(15))/2 x+1=i√(15)-1/2 x=(i√(15)-1/2)-1 x=i√(15)-3/2 I think this is esaier method. As this is 4th power equation hence it have 4 roots but in question value of x ε R Hence, according to question the value if x is either 1 or -3.
@DrWangUSA
@DrWangUSA Жыл бұрын
Nice work and thanks for sharing!
@prollysine
@prollysine Жыл бұрын
Sir, Hi, we get a solution by expanding the powers: 2x^4+12x^3+30x^2+36x+17=17 -> x(x^3+6x^2+15x+18)=0 , >>x=0 x^3+3x^2 + 3x^2+9x + 6x+18=0 -> (x+3)(x^2+3x+6)=0 , x+3=0 , >>x=-3
@DrWangUSA
@DrWangUSA Жыл бұрын
Nice work and thanks for sharing!
@prollysine
@prollysine Жыл бұрын
Dr. Wang, thank you for appreciating my paper, it presents an interesting example, regards...@@DrWangUSA
@hugh081
@hugh081 11 ай бұрын
Expand and combine terms, and the equation is divisible by x, so x=0 is a solution. The remaining cubic is fairly easy to solve
@DrWangUSA
@DrWangUSA 11 ай бұрын
Nice method and thanks for sharing
@바다노을-o3r
@바다노을-o3r 11 ай бұрын
16+1=17 2^4 + 1^4 = 17 (-1)^4 + (-2)^4 =17 따라서 x=0 또는 x=-3
@DrWangUSA
@DrWangUSA 11 ай бұрын
Thanks for sharing
@Quest3669
@Quest3669 8 ай бұрын
Its longer method ...solve just by making it a+b whole square form ....thts easy n wuick
@markandeysingh1355
@markandeysingh1355 4 ай бұрын
There should be Four Values of x.
@andrec.2935
@andrec.2935 11 ай бұрын
Linda solução!
@DrWangUSA
@DrWangUSA 11 ай бұрын
Thanks
@LuisSayago-ec3hq
@LuisSayago-ec3hq 7 ай бұрын
My solution is TRIVIAL..Making Y1=(X+2)^4 & Y2=(X+1)^4 then Y1=Y2 & By finding the values for both equations, we have that for Y1, (X,Y)=(0,16); (-1,1); (-2,0); (-3,1), etc & for Y2, (X,Y)=(0,16); (-1,17); (-3,1) etc.then the common values in both results are (0,16); (-3,1).. therefore the solutions of this question are X=0 ; X=-3...GOT IT??
@valvalrr
@valvalrr 6 ай бұрын
Hol up
@ЭдуардПлоткин-р3л
@ЭдуардПлоткин-р3л 11 ай бұрын
Зачем же так сложно решать такое легкое уравнение? (x+2)⁴-16+(x+1)⁴-1=0 Дальше используем разность квадратов и решение укладывается в 4 минуты. 2x(x+3)(x²+3x+6)=0 На вопросы не отвечу,нет свободного времени.
@DrWangUSA
@DrWangUSA 11 ай бұрын
Thanks for sharing
@jim2376
@jim2376 11 ай бұрын
By inspection x = 0 works.
@DrWangUSA
@DrWangUSA 11 ай бұрын
Nice work
@Bertin-q3y
@Bertin-q3y 11 ай бұрын
X=0 est trivial. On verra le reste.
@nicholasngo5428
@nicholasngo5428 11 ай бұрын
x=0
@Bertin-q3y
@Bertin-q3y 5 ай бұрын
X=0
USSR Math Olympiad | Inequality |  Mathematical Olympiad
10:04
Dr. Wang
Рет қаралды 1,7 М.
I was just passing by
00:10
Artem Ivashin
Рет қаралды 18 МЛН
Кто круче, как думаешь?
00:44
МЯТНАЯ ФАНТА
Рет қаралды 6 МЛН
Чистка воды совком от денег
00:32
FD Vasya
Рет қаралды 4,9 МЛН
A Very Nice Math Olympiad Problem | Solve for x? | Algebra Equation
16:33
Spencer's Academy
Рет қаралды 15 М.
Solving a Quartic Equation
17:08
Prime Newtons
Рет қаралды 116 М.
Can you Pass Stanford University Admission Simplification Problem ?
20:02
Math Olympiad Problem | You should know this TRICK!! | Algebra
10:07
Higher Mathematics
Рет қаралды 9 М.
Nice Olympiad Math | x^2-x^3=12  | Nice Math Olympiad Solution
15:05
OnlineMaths TV
Рет қаралды 1,4 МЛН
Hardest Exam Question | Only 8% of students got this math question correct
11:28
Smart Method: Solving Without Squaring First | Math Olympiad
7:54
I was just passing by
00:10
Artem Ivashin
Рет қаралды 18 МЛН