You can continue with the polynomial equation x^4-4x^2-x+2=0 by dividing it (long division) with (x+1)(x-2)=x^2-x-2 and get x^2+x-1=0 which yields the two other solutions x=(-1±√5)/2 of which only the positive root (φ) is the right one.
@SyberMath3 жыл бұрын
Nice!
@italixgaming9153 жыл бұрын
You still need to check if your candidate is a solution. Here is my method, that uses your idea: First of all we see that the function f: x---->sqrt(2-sqrt(2+x))-x is defined for x between -2 and 2. We already know, looking at the equation, that the solution must be positive. The function is continuous, and since f(0)>0 and f(2)
@shrovitz9693 жыл бұрын
You can easily solve the quartic equation here, just factorise it as following x^4-4x^2-x^2+2=0 write it as (x^4-x^2)+(-3x^2-x+2)=0 It will be factorised as x^2(x^2-1)+(2-3x)(x+1)=0 After further factorisation, it will become (x+1)(x^2(x-1)+2-3x)=0 (x+1)(x^3-x^2-3x+2)=0 We get our first solution, which is -1 but the problem is that it doesn’t satisfy the equation, so it’s wrong. What it means is that (x^3-x^2-3x+2) is equal to 0. Now, factorise this polynomial, it will factorise as following x^3-2x^2+(x^2-3x+2)=0 Factorise the quadratic side x^2(x-2)+(x-1)(x-2)=0 (x-2)(x^2+x-1)=0 2 doesn’t satisfy the equation as well, so it’s not 2? (x^2+x-1) should be equal to 0. Now we all know this famous quadratic, the solution comes out to be the golden ratio.
@RexxSchneider2 жыл бұрын
Without wishing to be rude, at 2:20 you have the equation x^4 - 4x^2 - x + 2 and suggest that solving it is long-winded, but you then spend more than 10 minutes using a substitution to solve it. Yet the rational root theorem suggests trying ±1 and ±2, and that quickly shows x = -1 and x = 2 are roots of the quartic. Polynomial division by (x+1)(x-2) gives x^2 + x - 1 = 0 and the solutions of that are (-1 ±√5)/2 which are -ϕ and 1/ϕ, where ϕ = (√5+1)/2, the golden ratio. Since √(something) = x we know that x is not negative, so we immediately discard x = -1 and x = -ϕ. We check that x = 2 is not a solution, then find that x = 1/ϕ is a solution.
@gianmarcolettieri61503 жыл бұрын
Great video. I just want to point out that you could just have devided by u+x. That's because u=sqrt(x+2), so u=>0 and 0
@SyberMath3 жыл бұрын
Good point!
@gemeni03 жыл бұрын
Положительные то они положительные ежели не комплексные. 😅
@notananimenerd13333 жыл бұрын
I used your previous factorizing method as (x²+ax-1)(x²+bx-2) and ended with all the 4 solutions though 1 is correct in the set of real numbers
@Skank_and_Gutterboy3 жыл бұрын
That's the way I went with it, too. The roots I got are: -1, 2, (√5-1)/2, and (-√5-1)/2. When checking these values against the original equation, only x=(√5-1)/2 is a good solution.
@shmuelzehavi49402 жыл бұрын
How did you a priori know it should be: (x^2+ax-1)(x^2+bx-2) and not (x^2+ax+1)(x^2+bx+2) ?
@RexxSchneider2 жыл бұрын
@@Skank_and_Gutterboy We expect if we solve the quartic to get roots of the equations ±√(2 ± √(x + 2)) = x, so the other roots are the solutions of -√(2 - √(x + 2)) = x for x = -1 +√(2 + √(x + 2)) = x for x = 2 -√(2 + √(x + 2)) = x for x = (-√5-1)/2
@itsgoodtoplaygames38303 жыл бұрын
Great video but -1 is actually a solution as the square root of a number can be either positive or negative resulting in √1=1 or -1 which is the initial value of x.
@SyberMath3 жыл бұрын
Not in the real world!
@vivekkirubakaran61933 жыл бұрын
At 4:08, why X should be greater than 0 because it is square root of something? X can be both positive and negative, right? For example X = Square root of 4 means X can be +/-2 (plus or minus 2)
@SyberMath3 жыл бұрын
Square root of a real number needs to be non-negative
@vivekkirubakaran61933 жыл бұрын
@@SyberMath Square root of the real number 4 is +/-2. This essentially means square root of a real number can be negative.
@MrGoofy423 жыл бұрын
@@vivekkirubakaran6193 The sqare root of 4 is 2 (it is just defined as a positive number). The solution of x²=4 is +/-2.
@vivekkirubakaran61933 жыл бұрын
@@MrGoofy42 isn't X-Square = 4 same as X = Squareroot of 4?
@kailashanand50863 жыл бұрын
@@MrGoofy42 exactly
@volodymyr.kushnir3 жыл бұрын
Did you tried put that answer into input equation ? For me only -1 works, am i doing something wrong ? I used assumptions: 1) x +2 >= 0 thus x >= -2 2) 2 - sqrt (x+2) >= 0 thus 2 >= sqrt(x+2) thus 4 >= x+2 thus 2 >= x So finally X should be in range [-2; 2). So i got 4 answers 2, -1 and same ones as you did. But only -1 works if i put it into original equation.
@RexxSchneider2 жыл бұрын
There is a convention (not universally honoured) that the square root sign designates the positive root only. So +√(2 - √(x + 2)) = +√(2 - √(-1 + 2)) for x = -1. That becomes +√(2 - √1) = +√(2 - 1) = +√1 = +1 which is not equal to x when x = -1, so x = -1 is _not_ a solution. The four values you found are the four solutions of ±√(2 ± √(x + 2)) = x as we might expect. But only x = (√5-1)/2 is a solution to the equation in the video.
@theOman3334 жыл бұрын
And cool vid! I'm surprised your channel has the amount of views it has... I expect it to grow, this is quality content!
@SyberMath4 жыл бұрын
Hey, thanks! 🥰
@emanuellandeholm56573 жыл бұрын
(sqrt(5)-1)/2 = 1 - phi = 1/phi :) Nice video. I tried the sub u = 2 -x which kind of works, but your solution is way cleaner.
@SyberMath3 жыл бұрын
Thank you!
@firstnamelastname47923 жыл бұрын
@@SyberMath it meant (sqrt(5)+1)/2 = 1 - phi = 1/phi
@firstnamelastname47923 жыл бұрын
it really meant (sqrt(5)+1)/2 = 1 + phi = 1/phi !
@PrimitiveSkillOfHmong3 жыл бұрын
Good job
@SyberMath3 жыл бұрын
Thanks
@PrimitiveSkillOfHmong3 жыл бұрын
@@SyberMath welcome,I like your Idea to solve ✌
@souleymanesylla25484 жыл бұрын
Nice thinking
@SyberMath4 жыл бұрын
Thanks!
@robertodiasfb3 жыл бұрын
Sooooo niiice! Thks
@SyberMath3 жыл бұрын
No problem! Glad you like it!
@michaelpurtell47413 жыл бұрын
I did it the hard way by solving for U which does give the golden ratio as a solution and then converting that back to X
@SyberMath3 жыл бұрын
Good!
@MathZoneKH3 жыл бұрын
That’s a good solution sir!
@rajeshbuya3 жыл бұрын
Why is x=2 rejected? In that case, u=√(x+2) could equal +2 or -2, if latter, then √(2-u) would in fact really equate to x=-2, again.
@koennako21952 жыл бұрын
We can use a formual here. For a infinitely nesting radical that goes (where a is a constant) sqrt(a-sqrt(a+x))=x. Like in blackpenredpens video about tejas' challenge problem, we can rewrite this as sqrt(a-sqrt(a+sqrt(a-sqrt(a+x)))). We can actually keep going forever and ever, so "dot dot dot". How does this have any relevance to this problem. Well, we can just move the 2 in front of the x in the last radical. Then we can see that the pattern is the same that I have described where the signs of the square root change from -, +, -, +, -,+, -, + and dot dot dot. Next, the formula. The formula is (sqrt(4a-3)-1)/2. If we plug in 2 for the variable a, then we get (sqrt(4(2)-3)-1)/2 = (sqrt(5)-1)/2 There are some math videos youtube that describe how to derive this formula. Yes, it is an obscure formula but, if you are trying to learn how to solve problems like these or just challenge problems in general, then you can memorize this formula for an instant answer.
@guadalajara48483 жыл бұрын
After two minutes, you can solve the equation obviously by factorising : X^4 - 4X^2 - X + 2 = X^2 (X^2 - 4) - (X - 2) = X^2 (X - 2) (X + 2) - (X - 2) = (X - 2) ( X^2 (X+ 2) - 1) = (X-2) (X^3 + 2 X^2 - 1) and you easily see that the second polynomial is equal to zero when X = -1 so it is divisible by (X+1) etc.
@ibrahimsoubki75873 жыл бұрын
Hi, I'm a math teacher and has just discovered your channel. I enjoyed this video and I'm looking forward to see the others. + 1 subscriber 😉
@SyberMath3 жыл бұрын
Thank you, professor! 💖😊
@paultoutounji35823 жыл бұрын
As always I loved the video !
@SyberMath3 жыл бұрын
You're the best!
@mateuszjarek85873 жыл бұрын
After finding the quadratic, we can Just check whether divisors of 2 are sols. We easily find them and then use Horner's schema
@alainfontenla79053 жыл бұрын
Apply your method to sqr(2-sqr(x-2))=x. Never start calculating without checking for which x what you are writing exists.
@italixgaming9153 жыл бұрын
My solution (of course way faster - plus the fact that yours is not complete since you don't prove that there is a solution so you need to test your candidate): First of all we see that the function f: x---->sqrt(2-sqrt(2+x))-x is defined for x between -2 and 2. We already know, looking at the equation, that the solution must be positive. The function is continuous, and since f(0)>0 and f(2)
@ZAHIDHUSSAINBAIG3 жыл бұрын
As I have calculated that X=-1 is also a solution of this problem because it is satisfying the given equition.
@SyberMath3 жыл бұрын
-1 cannot be the square root because x is real
@theOman3334 жыл бұрын
is it negative little phi?
@SyberMath4 жыл бұрын
Is it? 😁
@Артьомдругартем3 жыл бұрын
Можно сделать подстановку x=2cos y 2+2cos y=4cos^2(y/2) 2-2cos(y/2)=4 sin^2(y/4) 2sin(y/4)=2 cos y cos(π/2-y/4)= cos y 5/4y=π/2. y=2/5π
@SyberMath3 жыл бұрын
Nice!
@aashsyed12773 жыл бұрын
@@SyberMath real nice!!!!!!
@AnkitYadav-il2fo2 жыл бұрын
It was so nice
@giuseppelucianoferrero89163 жыл бұрын
prof. bravo! ma mi domando quale sia la rappresentazione "geometrica" di quel valore di X= 1/𝛗 =(+ 0,618...),ovvero, il reciproco del rapporto aureo! l'equazione (X^2-X-1=0 ); risolve invece in (+𝛗) positivo e ( -1/𝛗) in negativo , il cui prodotto P= -1=( -0,618*1,618) e la cui ∑ = +1=( -0,618+1,618). Inoltre, la Parabola ,che li rappresenta , ha un senso anche nella geometria euclidea cartesiana perché l'unità(= 1) indica il diametro del cerchio in cui è inscritto il triangolo retto di lati b=√ (1/𝛗) ; b= (-1/𝛗) e c=( +b+ 1/𝛗^2) ) i cui valori sono rispettivamente ; a= 0,786..( cateto lungo); b=( - 0,618 ) cateto corto ; c= (0,618.. + 0,382..)=1 ( ipotenusa,diametro) Infine ,faccio notare che il valore negativo del lato corto indica in geometria analitica che la sua pendenza è negativa e ,pertanto si trova nel primo quadrante ,quando gli assi cartesiani passano per l'altezza h=√( 0,618)(0,382)=√ 0,236... ≃=0 ,486.. Mi scuso se mi sono allargato nell'interpretare i risultati ma mi pareva utile per il dibattito scientifico in questione. cordialità. joseph 11/12/21
@piyushdaga3574 жыл бұрын
(√5/2 ) -(1/2) is the only solution -1, 2,(-√5/2 - 1/2) are the extraneous solutions
@ashishpradhan96064 жыл бұрын
Yup I got also one solution. It's (√5-1)/2. But why have you mentioned about -1 and 2
@piyushdaga3574 жыл бұрын
@@ashishpradhan9606 Yup I think so you have tried different method I went through simple approach. I went on squaring this equation until I get a Polynomial of degree 4 . Then I applied factor theorem to factorise the polynomial. From there I got 4 roots of that conic equation. I plugged those roots back in my original equation but only one root actually satisfied the given equation So the rest roots were extraneous solutions
@ashishpradhan96064 жыл бұрын
@@piyushdaga357 Mine approach is also exactly like yours but I avoided the extrenous solutions by restricting the domain of x with inequality. 😁😁😁
@leif10754 жыл бұрын
No negative 1 is also valid.plug it in amd it works out..
@Qermaq4 жыл бұрын
@@leif1075 Think about it this way. To get that to work, we must assume the inside radical yields the positive root and the outside a negative. There is ambiguity there. I'd agree that -1 is a valid value we can assign, but I disagree that it's a proper solution. Only 1/phi truly works without ambiguity.
@ybodoN4 жыл бұрын
You at 3:35 searching for a name... Me thinking about domino effect...
@SyberMath4 жыл бұрын
😁
@roman_roman_roman3 жыл бұрын
I am from Siberia, so, SyberMath is good for me :)
@SyberMath3 жыл бұрын
That's cool. 😁
@roman_roman_roman3 жыл бұрын
@@SyberMath , that"s cold
@Alians01084 жыл бұрын
My method is pretty generic: √(2-√(x+2)) = x (2 > x > 0 is implied) x^2 = 2-√(x+2) x^2-2 = √(x+2) x^4-4x^2+4 = x+2 x^4-4x^2-x+2 = 0 x^2(x^2-4) - (x+2) = 0 x^2(x+2)(x-2) - (x+2) =0 (x-2)(x^3+2x^2-1) = (x-2)(x^3+x^2+x^2-1) = (x-2)(x+1)(x^2+x-1) = 0 (x-2)(x+1) are false factors and x^2+x-1 has one negative root. Only valid root is x = (√5-1)/2
@SyberMath4 жыл бұрын
Pretty good!
@strikerstone3 жыл бұрын
finally i was able to solve this myself !
@michaelempeigne35194 жыл бұрын
( sqrt 5 - 1 ) / 2 = 1 / phi
@SyberMath4 жыл бұрын
That's right!
@williamemerson73433 жыл бұрын
@@SyberMath It is also (phi-1)
@alainfontenla79053 жыл бұрын
Theoretically you are supposed to determine first for which set of x this function exists. You might have a surprise.
@Ni9993 жыл бұрын
Not in the mood for real math, strictly my problem and pretty rare. A few minutes of iterative search with a calculator gave me 0.618, not bad. Real math would have been less work lol. Edit - excellent work in the video!
@SyberMath3 жыл бұрын
😊
@sueyibaslanli35193 жыл бұрын
The best way is graph, I think
@SyberMath3 жыл бұрын
Graphing is almost always a good thing
@Blaqjaqshellaq2 жыл бұрын
X is the inverse of the golden ratio, as well as the golden ratio minus 1.
@kailashanand50863 жыл бұрын
after seeing a bunch of mindyourdecision videos i was pretty sure a solution would be root(5)-1/2 haha nice! i didnt think of the second method, i solved it the first way
@SyberMath3 жыл бұрын
Excellent!
@libardouribe8833 жыл бұрын
Una SUPER estrategia. Felitaciones.👏
@SyberMath3 жыл бұрын
Thank you!
@oguzhanaras28973 жыл бұрын
Respect!!!
@Gezraf6 ай бұрын
the golden ratio conjugate
@gemeni03 жыл бұрын
В уме: 2;-1;(±√5-1)/2 Из них положительные: 2 и (√5-1)/2
@kalyanbasak64943 жыл бұрын
Good afternoon, answer sharing X=2& 3 ,sir your good teaching capacity, awesome thanks
@SyberMath3 жыл бұрын
Np. Thank you!
@rocamgreg2 жыл бұрын
Excelente 👍👍👍
@SyberMath2 жыл бұрын
Obrigada!
@ramlakhanyadav65633 жыл бұрын
I think x belong to (0, √2) not (0, 2) please check the domain of x again
@kurtlichtenstein23254 жыл бұрын
Good one!
@SyberMath4 жыл бұрын
Thanks for listening!
@kurtlichtenstein23254 жыл бұрын
I wonder, if you knew where you were going, you could aim to prove that ux=1, and u=x+1, and if you knew that, there's only one thing u and x can be.
la réponse est dans l'énoncé du problème : phi = 1 + 1/phi
@Nikioko3 жыл бұрын
If they problem is Golden, the answer must be Φ = (1 + √5) / 2. ;-)
@annoyingbstard94073 жыл бұрын
Is it 7?
@SyberMath3 жыл бұрын
No
@annoyingbstard94073 жыл бұрын
@@SyberMath It was a good guess though.
@tonyhaddad13944 жыл бұрын
I not sure but i think this is the conjugate of the golden ratio (im right ?)
@SyberMath4 жыл бұрын
Sort of but it is also related to Golden Ratio in a different way!
@angelmendez-rivera3514 жыл бұрын
It is the multiplicative inverse of the golden ratio.
@tonyhaddad13944 жыл бұрын
@@SyberMath i think angel mendez has get the answer !!!!
@leonhardeuler52114 жыл бұрын
@@tonyhaddad1394 yeah it’s the reciprocal
@tonyhaddad13944 жыл бұрын
@@leonhardeuler5211 thank u
@nathanruben33723 жыл бұрын
if √(x+2) = u, the expression √(2-u) = x is wrong. I did not watch the rest of it after seeing it.
@SyberMath3 жыл бұрын
Why?
@alainfontenla79053 жыл бұрын
Exactly. This is not a good way to teach maths. I am sorry to say.
@ianmathwiz72 жыл бұрын
1/φ is the answer.
@bapibasu28403 жыл бұрын
This is Fibonacci's ratio
@bitsavas3 жыл бұрын
i want to ask you something mister sybermath..are you a mathimatician ? i suppose yes? you are teaching in a school?
@SyberMath3 жыл бұрын
Thanks for asking. I don't know what qualifies for mathematician but I studied math in college. I taught in schools for some time and then stopped. Currently tutoring students one-on-one.
@bitsavas3 жыл бұрын
@@SyberMath have a nice day ,where you live in usa i suppose?
@заводмихельсона3 жыл бұрын
Есть,по меньшей мере,десяток методов решения этого уравнения.Если автор заинтересуется,могу приобщить его к настоящей математике.
@mubitajosephmwepu2 жыл бұрын
Hey inbox me
@scottlee82703 жыл бұрын
Is this a math Olympiad question?
@SyberMath3 жыл бұрын
I don't think so but it might as well be
@compostsfertilizers54713 жыл бұрын
Now use the first method... show off !!
@SyberMath3 жыл бұрын
What do you mean?
@compostsfertilizers54713 жыл бұрын
@@SyberMath What level is this math ? It's ok i was just joking.
@SyberMath3 жыл бұрын
@@compostsfertilizers5471 Ok, cool! This is probably high school and above, more like competition style
@compostsfertilizers54713 жыл бұрын
@@SyberMath high quality stuff. Please don't stop.
"x+2 must be >0 otherwise it is not going to be a real number" - so what's wrong with it not being a real number? what's so special about real numbers? :)
@SyberMath3 жыл бұрын
They are REAL! 😁😜
@tajpa1003 жыл бұрын
Golden ratio-1
@danradutz82282 жыл бұрын
You have not checked that the solution is
@falkinable3 жыл бұрын
The solution is the reciprocal of the golden ratio. 1/φ
@kubaszabelski25683 жыл бұрын
and also φ-1
@tonyhaddad13944 жыл бұрын
Im*
@Caturiya3 жыл бұрын
What is the need of the inequalities? Is it not enough to consider the equation 6.54? You confuse harmless students.