Solving a Golden Radical Equation

  Рет қаралды 118,970

SyberMath

SyberMath

Күн бұрын

Пікірлер: 163
@IlanAmity
@IlanAmity 3 жыл бұрын
You can continue with the polynomial equation x^4-4x^2-x+2=0 by dividing it (long division) with (x+1)(x-2)=x^2-x-2 and get x^2+x-1=0 which yields the two other solutions x=(-1±√5)/2 of which only the positive root (φ) is the right one.
@SyberMath
@SyberMath 3 жыл бұрын
Nice!
@italixgaming915
@italixgaming915 3 жыл бұрын
You still need to check if your candidate is a solution. Here is my method, that uses your idea: First of all we see that the function f: x---->sqrt(2-sqrt(2+x))-x is defined for x between -2 and 2. We already know, looking at the equation, that the solution must be positive. The function is continuous, and since f(0)>0 and f(2)
@shrovitz969
@shrovitz969 3 жыл бұрын
You can easily solve the quartic equation here, just factorise it as following x^4-4x^2-x^2+2=0 write it as (x^4-x^2)+(-3x^2-x+2)=0 It will be factorised as x^2(x^2-1)+(2-3x)(x+1)=0 After further factorisation, it will become (x+1)(x^2(x-1)+2-3x)=0 (x+1)(x^3-x^2-3x+2)=0 We get our first solution, which is -1 but the problem is that it doesn’t satisfy the equation, so it’s wrong. What it means is that (x^3-x^2-3x+2) is equal to 0. Now, factorise this polynomial, it will factorise as following x^3-2x^2+(x^2-3x+2)=0 Factorise the quadratic side x^2(x-2)+(x-1)(x-2)=0 (x-2)(x^2+x-1)=0 2 doesn’t satisfy the equation as well, so it’s not 2? (x^2+x-1) should be equal to 0. Now we all know this famous quadratic, the solution comes out to be the golden ratio.
@RexxSchneider
@RexxSchneider 2 жыл бұрын
Without wishing to be rude, at 2:20 you have the equation x^4 - 4x^2 - x + 2 and suggest that solving it is long-winded, but you then spend more than 10 minutes using a substitution to solve it. Yet the rational root theorem suggests trying ±1 and ±2, and that quickly shows x = -1 and x = 2 are roots of the quartic. Polynomial division by (x+1)(x-2) gives x^2 + x - 1 = 0 and the solutions of that are (-1 ±√5)/2 which are -ϕ and 1/ϕ, where ϕ = (√5+1)/2, the golden ratio. Since √(something) = x we know that x is not negative, so we immediately discard x = -1 and x = -ϕ. We check that x = 2 is not a solution, then find that x = 1/ϕ is a solution.
@gianmarcolettieri6150
@gianmarcolettieri6150 3 жыл бұрын
Great video. I just want to point out that you could just have devided by u+x. That's because u=sqrt(x+2), so u=>0 and 0
@SyberMath
@SyberMath 3 жыл бұрын
Good point!
@gemeni0
@gemeni0 3 жыл бұрын
Положительные то они положительные ежели не комплексные. 😅
@notananimenerd1333
@notananimenerd1333 3 жыл бұрын
I used your previous factorizing method as (x²+ax-1)(x²+bx-2) and ended with all the 4 solutions though 1 is correct in the set of real numbers
@Skank_and_Gutterboy
@Skank_and_Gutterboy 3 жыл бұрын
That's the way I went with it, too. The roots I got are: -1, 2, (√5-1)/2, and (-√5-1)/2. When checking these values against the original equation, only x=(√5-1)/2 is a good solution.
@shmuelzehavi4940
@shmuelzehavi4940 2 жыл бұрын
How did you a priori know it should be: (x^2+ax-1)(x^2+bx-2) and not (x^2+ax+1)(x^2+bx+2) ?
@RexxSchneider
@RexxSchneider 2 жыл бұрын
@@Skank_and_Gutterboy We expect if we solve the quartic to get roots of the equations ±√(2 ± √(x + 2)) = x, so the other roots are the solutions of -√(2 - √(x + 2)) = x for x = -1 +√(2 + √(x + 2)) = x for x = 2 -√(2 + √(x + 2)) = x for x = (-√5-1)/2
@itsgoodtoplaygames3830
@itsgoodtoplaygames3830 3 жыл бұрын
Great video but -1 is actually a solution as the square root of a number can be either positive or negative resulting in √1=1 or -1 which is the initial value of x.
@SyberMath
@SyberMath 3 жыл бұрын
Not in the real world!
@vivekkirubakaran6193
@vivekkirubakaran6193 3 жыл бұрын
At 4:08, why X should be greater than 0 because it is square root of something? X can be both positive and negative, right? For example X = Square root of 4 means X can be +/-2 (plus or minus 2)
@SyberMath
@SyberMath 3 жыл бұрын
Square root of a real number needs to be non-negative
@vivekkirubakaran6193
@vivekkirubakaran6193 3 жыл бұрын
@@SyberMath Square root of the real number 4 is +/-2. This essentially means square root of a real number can be negative.
@MrGoofy42
@MrGoofy42 3 жыл бұрын
@@vivekkirubakaran6193 The sqare root of 4 is 2 (it is just defined as a positive number). The solution of x²=4 is +/-2.
@vivekkirubakaran6193
@vivekkirubakaran6193 3 жыл бұрын
@@MrGoofy42 isn't X-Square = 4 same as X = Squareroot of 4?
@kailashanand5086
@kailashanand5086 3 жыл бұрын
@@MrGoofy42 exactly
@volodymyr.kushnir
@volodymyr.kushnir 3 жыл бұрын
Did you tried put that answer into input equation ? For me only -1 works, am i doing something wrong ? I used assumptions: 1) x +2 >= 0 thus x >= -2 2) 2 - sqrt (x+2) >= 0 thus 2 >= sqrt(x+2) thus 4 >= x+2 thus 2 >= x So finally X should be in range [-2; 2). So i got 4 answers 2, -1 and same ones as you did. But only -1 works if i put it into original equation.
@RexxSchneider
@RexxSchneider 2 жыл бұрын
There is a convention (not universally honoured) that the square root sign designates the positive root only. So +√(2 - √(x + 2)) = +√(2 - √(-1 + 2)) for x = -1. That becomes +√(2 - √1) = +√(2 - 1) = +√1 = +1 which is not equal to x when x = -1, so x = -1 is _not_ a solution. The four values you found are the four solutions of ±√(2 ± √(x + 2)) = x as we might expect. But only x = (√5-1)/2 is a solution to the equation in the video.
@theOman333
@theOman333 4 жыл бұрын
And cool vid! I'm surprised your channel has the amount of views it has... I expect it to grow, this is quality content!
@SyberMath
@SyberMath 4 жыл бұрын
Hey, thanks! 🥰
@emanuellandeholm5657
@emanuellandeholm5657 3 жыл бұрын
(sqrt(5)-1)/2 = 1 - phi = 1/phi :) Nice video. I tried the sub u = 2 -x which kind of works, but your solution is way cleaner.
@SyberMath
@SyberMath 3 жыл бұрын
Thank you!
@firstnamelastname4792
@firstnamelastname4792 3 жыл бұрын
@@SyberMath it meant (sqrt(5)+1)/2 = 1 - phi = 1/phi
@firstnamelastname4792
@firstnamelastname4792 3 жыл бұрын
it really meant (sqrt(5)+1)/2 = 1 + phi = 1/phi !
@PrimitiveSkillOfHmong
@PrimitiveSkillOfHmong 3 жыл бұрын
Good job
@SyberMath
@SyberMath 3 жыл бұрын
Thanks
@PrimitiveSkillOfHmong
@PrimitiveSkillOfHmong 3 жыл бұрын
@@SyberMath welcome,I like your Idea to solve ✌
@souleymanesylla2548
@souleymanesylla2548 4 жыл бұрын
Nice thinking
@SyberMath
@SyberMath 4 жыл бұрын
Thanks!
@robertodiasfb
@robertodiasfb 3 жыл бұрын
Sooooo niiice! Thks
@SyberMath
@SyberMath 3 жыл бұрын
No problem! Glad you like it!
@michaelpurtell4741
@michaelpurtell4741 3 жыл бұрын
I did it the hard way by solving for U which does give the golden ratio as a solution and then converting that back to X
@SyberMath
@SyberMath 3 жыл бұрын
Good!
@MathZoneKH
@MathZoneKH 3 жыл бұрын
That’s a good solution sir!
@rajeshbuya
@rajeshbuya 3 жыл бұрын
Why is x=2 rejected? In that case, u=√(x+2) could equal +2 or -2, if latter, then √(2-u) would in fact really equate to x=-2, again.
@koennako2195
@koennako2195 2 жыл бұрын
We can use a formual here. For a infinitely nesting radical that goes (where a is a constant) sqrt(a-sqrt(a+x))=x. Like in blackpenredpens video about tejas' challenge problem, we can rewrite this as sqrt(a-sqrt(a+sqrt(a-sqrt(a+x)))). We can actually keep going forever and ever, so "dot dot dot". How does this have any relevance to this problem. Well, we can just move the 2 in front of the x in the last radical. Then we can see that the pattern is the same that I have described where the signs of the square root change from -, +, -, +, -,+, -, + and dot dot dot. Next, the formula. The formula is (sqrt(4a-3)-1)/2. If we plug in 2 for the variable a, then we get (sqrt(4(2)-3)-1)/2 = (sqrt(5)-1)/2 There are some math videos youtube that describe how to derive this formula. Yes, it is an obscure formula but, if you are trying to learn how to solve problems like these or just challenge problems in general, then you can memorize this formula for an instant answer.
@guadalajara4848
@guadalajara4848 3 жыл бұрын
After two minutes, you can solve the equation obviously by factorising : X^4 - 4X^2 - X + 2 = X^2 (X^2 - 4) - (X - 2) = X^2 (X - 2) (X + 2) - (X - 2) = (X - 2) ( X^2 (X+ 2) - 1) = (X-2) (X^3 + 2 X^2 - 1) and you easily see that the second polynomial is equal to zero when X = -1 so it is divisible by (X+1) etc.
@ibrahimsoubki7587
@ibrahimsoubki7587 3 жыл бұрын
Hi, I'm a math teacher and has just discovered your channel. I enjoyed this video and I'm looking forward to see the others. + 1 subscriber 😉
@SyberMath
@SyberMath 3 жыл бұрын
Thank you, professor! 💖😊
@paultoutounji3582
@paultoutounji3582 3 жыл бұрын
As always I loved the video !
@SyberMath
@SyberMath 3 жыл бұрын
You're the best!
@mateuszjarek8587
@mateuszjarek8587 3 жыл бұрын
After finding the quadratic, we can Just check whether divisors of 2 are sols. We easily find them and then use Horner's schema
@alainfontenla7905
@alainfontenla7905 3 жыл бұрын
Apply your method to sqr(2-sqr(x-2))=x. Never start calculating without checking for which x what you are writing exists.
@italixgaming915
@italixgaming915 3 жыл бұрын
My solution (of course way faster - plus the fact that yours is not complete since you don't prove that there is a solution so you need to test your candidate): First of all we see that the function f: x---->sqrt(2-sqrt(2+x))-x is defined for x between -2 and 2. We already know, looking at the equation, that the solution must be positive. The function is continuous, and since f(0)>0 and f(2)
@ZAHIDHUSSAINBAIG
@ZAHIDHUSSAINBAIG 3 жыл бұрын
As I have calculated that X=-1 is also a solution of this problem because it is satisfying the given equition.
@SyberMath
@SyberMath 3 жыл бұрын
-1 cannot be the square root because x is real
@theOman333
@theOman333 4 жыл бұрын
is it negative little phi?
@SyberMath
@SyberMath 4 жыл бұрын
Is it? 😁
@Артьомдругартем
@Артьомдругартем 3 жыл бұрын
Можно сделать подстановку x=2cos y 2+2cos y=4cos^2(y/2) 2-2cos(y/2)=4 sin^2(y/4) 2sin(y/4)=2 cos y cos(π/2-y/4)= cos y 5/4y=π/2. y=2/5π
@SyberMath
@SyberMath 3 жыл бұрын
Nice!
@aashsyed1277
@aashsyed1277 3 жыл бұрын
@@SyberMath real nice!!!!!!
@AnkitYadav-il2fo
@AnkitYadav-il2fo 2 жыл бұрын
It was so nice
@giuseppelucianoferrero8916
@giuseppelucianoferrero8916 3 жыл бұрын
prof. bravo! ma mi domando quale sia la rappresentazione "geometrica" di quel valore di X= 1/𝛗 =(+ 0,618...),ovvero, il reciproco del rapporto aureo! l'equazione (X^2-X-1=0 ); risolve invece in (+𝛗) positivo e ( -1/𝛗) in negativo , il cui prodotto P= -1=( -0,618*1,618) e la cui ∑ = +1=( -0,618+1,618). Inoltre, la Parabola ,che li rappresenta , ha un senso anche nella geometria euclidea cartesiana perché l'unità(= 1) indica il diametro del cerchio in cui è inscritto il triangolo retto di lati b=√ (1/𝛗) ; b= (-1/𝛗) e c=( +b+ 1/𝛗^2) ) i cui valori sono rispettivamente ; a= 0,786..( cateto lungo); b=( - 0,618 ) cateto corto ; c= (0,618.. + 0,382..)=1 ( ipotenusa,diametro) Infine ,faccio notare che il valore negativo del lato corto indica in geometria analitica che la sua pendenza è negativa e ,pertanto si trova nel primo quadrante ,quando gli assi cartesiani passano per l'altezza h=√( 0,618)(0,382)=√ 0,236... ≃=0 ,486.. Mi scuso se mi sono allargato nell'interpretare i risultati ma mi pareva utile per il dibattito scientifico in questione. cordialità. joseph 11/12/21
@piyushdaga357
@piyushdaga357 4 жыл бұрын
(√5/2 ) -(1/2) is the only solution -1, 2,(-√5/2 - 1/2) are the extraneous solutions
@ashishpradhan9606
@ashishpradhan9606 4 жыл бұрын
Yup I got also one solution. It's (√5-1)/2. But why have you mentioned about -1 and 2
@piyushdaga357
@piyushdaga357 4 жыл бұрын
@@ashishpradhan9606 Yup I think so you have tried different method I went through simple approach. I went on squaring this equation until I get a Polynomial of degree 4 . Then I applied factor theorem to factorise the polynomial. From there I got 4 roots of that conic equation. I plugged those roots back in my original equation but only one root actually satisfied the given equation So the rest roots were extraneous solutions
@ashishpradhan9606
@ashishpradhan9606 4 жыл бұрын
@@piyushdaga357 Mine approach is also exactly like yours but I avoided the extrenous solutions by restricting the domain of x with inequality. 😁😁😁
@leif1075
@leif1075 4 жыл бұрын
No negative 1 is also valid.plug it in amd it works out..
@Qermaq
@Qermaq 4 жыл бұрын
@@leif1075 Think about it this way. To get that to work, we must assume the inside radical yields the positive root and the outside a negative. There is ambiguity there. I'd agree that -1 is a valid value we can assign, but I disagree that it's a proper solution. Only 1/phi truly works without ambiguity.
@ybodoN
@ybodoN 4 жыл бұрын
You at 3:35 searching for a name... Me thinking about domino effect...
@SyberMath
@SyberMath 4 жыл бұрын
😁
@roman_roman_roman
@roman_roman_roman 3 жыл бұрын
I am from Siberia, so, SyberMath is good for me :)
@SyberMath
@SyberMath 3 жыл бұрын
That's cool. 😁
@roman_roman_roman
@roman_roman_roman 3 жыл бұрын
@@SyberMath , that"s cold
@Alians0108
@Alians0108 4 жыл бұрын
My method is pretty generic: √(2-√(x+2)) = x (2 > x > 0 is implied) x^2 = 2-√(x+2) x^2-2 = √(x+2) x^4-4x^2+4 = x+2 x^4-4x^2-x+2 = 0 x^2(x^2-4) - (x+2) = 0 x^2(x+2)(x-2) - (x+2) =0 (x-2)(x^3+2x^2-1) = (x-2)(x^3+x^2+x^2-1) = (x-2)(x+1)(x^2+x-1) = 0 (x-2)(x+1) are false factors and x^2+x-1 has one negative root. Only valid root is x = (√5-1)/2
@SyberMath
@SyberMath 4 жыл бұрын
Pretty good!
@strikerstone
@strikerstone 3 жыл бұрын
finally i was able to solve this myself !
@michaelempeigne3519
@michaelempeigne3519 4 жыл бұрын
( sqrt 5 - 1 ) / 2 = 1 / phi
@SyberMath
@SyberMath 4 жыл бұрын
That's right!
@williamemerson7343
@williamemerson7343 3 жыл бұрын
@@SyberMath It is also (phi-1)
@alainfontenla7905
@alainfontenla7905 3 жыл бұрын
Theoretically you are supposed to determine first for which set of x this function exists. You might have a surprise.
@Ni999
@Ni999 3 жыл бұрын
Not in the mood for real math, strictly my problem and pretty rare. A few minutes of iterative search with a calculator gave me 0.618, not bad. Real math would have been less work lol. Edit - excellent work in the video!
@SyberMath
@SyberMath 3 жыл бұрын
😊
@sueyibaslanli3519
@sueyibaslanli3519 3 жыл бұрын
The best way is graph, I think
@SyberMath
@SyberMath 3 жыл бұрын
Graphing is almost always a good thing
@Blaqjaqshellaq
@Blaqjaqshellaq 2 жыл бұрын
X is the inverse of the golden ratio, as well as the golden ratio minus 1.
@kailashanand5086
@kailashanand5086 3 жыл бұрын
after seeing a bunch of mindyourdecision videos i was pretty sure a solution would be root(5)-1/2 haha nice! i didnt think of the second method, i solved it the first way
@SyberMath
@SyberMath 3 жыл бұрын
Excellent!
@libardouribe883
@libardouribe883 3 жыл бұрын
Una SUPER estrategia. Felitaciones.👏
@SyberMath
@SyberMath 3 жыл бұрын
Thank you!
@oguzhanaras2897
@oguzhanaras2897 3 жыл бұрын
Respect!!!
@Gezraf
@Gezraf 6 ай бұрын
the golden ratio conjugate
@gemeni0
@gemeni0 3 жыл бұрын
В уме: 2;-1;(±√5-1)/2 Из них положительные: 2 и (√5-1)/2
@kalyanbasak6494
@kalyanbasak6494 3 жыл бұрын
Good afternoon, answer sharing X=2& 3 ,sir your good teaching capacity, awesome thanks
@SyberMath
@SyberMath 3 жыл бұрын
Np. Thank you!
@rocamgreg
@rocamgreg 2 жыл бұрын
Excelente 👍👍👍
@SyberMath
@SyberMath 2 жыл бұрын
Obrigada!
@ramlakhanyadav6563
@ramlakhanyadav6563 3 жыл бұрын
I think x belong to (0, √2) not (0, 2) please check the domain of x again
@kurtlichtenstein2325
@kurtlichtenstein2325 4 жыл бұрын
Good one!
@SyberMath
@SyberMath 4 жыл бұрын
Thanks for listening!
@kurtlichtenstein2325
@kurtlichtenstein2325 4 жыл бұрын
I wonder, if you knew where you were going, you could aim to prove that ux=1, and u=x+1, and if you knew that, there's only one thing u and x can be.
@irwandasaputra9315
@irwandasaputra9315 3 жыл бұрын
2-√(x+2)=x^2 -√(x+2)=x^2 -2 √(x+2)=2-x^2 x+2=4-4x^2+4x^4
@damiennortier8942
@damiennortier8942 3 жыл бұрын
It is phi - 1 or 1/phi
@nawusayipsunam1643
@nawusayipsunam1643 4 жыл бұрын
Good problem.
@SyberMath
@SyberMath 4 жыл бұрын
Thanks!
@aagiard
@aagiard 3 жыл бұрын
la réponse est dans l'énoncé du problème : phi = 1 + 1/phi
@Nikioko
@Nikioko 3 жыл бұрын
If they problem is Golden, the answer must be Φ = (1 + √5) / 2. ;-)
@annoyingbstard9407
@annoyingbstard9407 3 жыл бұрын
Is it 7?
@SyberMath
@SyberMath 3 жыл бұрын
No
@annoyingbstard9407
@annoyingbstard9407 3 жыл бұрын
@@SyberMath It was a good guess though.
@tonyhaddad1394
@tonyhaddad1394 4 жыл бұрын
I not sure but i think this is the conjugate of the golden ratio (im right ?)
@SyberMath
@SyberMath 4 жыл бұрын
Sort of but it is also related to Golden Ratio in a different way!
@angelmendez-rivera351
@angelmendez-rivera351 4 жыл бұрын
It is the multiplicative inverse of the golden ratio.
@tonyhaddad1394
@tonyhaddad1394 4 жыл бұрын
@@SyberMath i think angel mendez has get the answer !!!!
@leonhardeuler5211
@leonhardeuler5211 4 жыл бұрын
@@tonyhaddad1394 yeah it’s the reciprocal
@tonyhaddad1394
@tonyhaddad1394 4 жыл бұрын
@@leonhardeuler5211 thank u
@nathanruben3372
@nathanruben3372 3 жыл бұрын
if √(x+2) = u, the expression √(2-u) = x is wrong. I did not watch the rest of it after seeing it.
@SyberMath
@SyberMath 3 жыл бұрын
Why?
@alainfontenla7905
@alainfontenla7905 3 жыл бұрын
Exactly. This is not a good way to teach maths. I am sorry to say.
@ianmathwiz7
@ianmathwiz7 2 жыл бұрын
1/φ is the answer.
@bapibasu2840
@bapibasu2840 3 жыл бұрын
This is Fibonacci's ratio
@bitsavas
@bitsavas 3 жыл бұрын
i want to ask you something mister sybermath..are you a mathimatician ? i suppose yes? you are teaching in a school?
@SyberMath
@SyberMath 3 жыл бұрын
Thanks for asking. I don't know what qualifies for mathematician but I studied math in college. I taught in schools for some time and then stopped. Currently tutoring students one-on-one.
@bitsavas
@bitsavas 3 жыл бұрын
@@SyberMath have a nice day ,where you live in usa i suppose?
@заводмихельсона
@заводмихельсона 3 жыл бұрын
Есть,по меньшей мере,десяток методов решения этого уравнения.Если автор заинтересуется,могу приобщить его к настоящей математике.
@mubitajosephmwepu
@mubitajosephmwepu 2 жыл бұрын
Hey inbox me
@scottlee8270
@scottlee8270 3 жыл бұрын
Is this a math Olympiad question?
@SyberMath
@SyberMath 3 жыл бұрын
I don't think so but it might as well be
@compostsfertilizers5471
@compostsfertilizers5471 3 жыл бұрын
Now use the first method... show off !!
@SyberMath
@SyberMath 3 жыл бұрын
What do you mean?
@compostsfertilizers5471
@compostsfertilizers5471 3 жыл бұрын
@@SyberMath What level is this math ? It's ok i was just joking.
@SyberMath
@SyberMath 3 жыл бұрын
​@@compostsfertilizers5471 Ok, cool! This is probably high school and above, more like competition style
@compostsfertilizers5471
@compostsfertilizers5471 3 жыл бұрын
@@SyberMath high quality stuff. Please don't stop.
@SyberMath
@SyberMath 3 жыл бұрын
Thank you!
@karljo8064
@karljo8064 3 жыл бұрын
maths is so complicated
@Biblapghosh
@Biblapghosh 4 жыл бұрын
X=5.3722.....,-0.3722.....,5.70156.....,-0.70156....
@arekkrolak6320
@arekkrolak6320 3 жыл бұрын
"x+2 must be >0 otherwise it is not going to be a real number" - so what's wrong with it not being a real number? what's so special about real numbers? :)
@SyberMath
@SyberMath 3 жыл бұрын
They are REAL! 😁😜
@tajpa100
@tajpa100 3 жыл бұрын
Golden ratio-1
@danradutz8228
@danradutz8228 2 жыл бұрын
You have not checked that the solution is
@falkinable
@falkinable 3 жыл бұрын
The solution is the reciprocal of the golden ratio. 1/φ
@kubaszabelski2568
@kubaszabelski2568 3 жыл бұрын
and also φ-1
@tonyhaddad1394
@tonyhaddad1394 4 жыл бұрын
Im*
@Caturiya
@Caturiya 3 жыл бұрын
What is the need of the inequalities? Is it not enough to consider the equation 6.54? You confuse harmless students.
@muiamathsmadeeasy3760
@muiamathsmadeeasy3760 2 жыл бұрын
Which application is this for solving maths
@АзизханУмархужаев-з8з
@АзизханУмархужаев-з8з 4 жыл бұрын
using bezout theorem faster
@SyberMath
@SyberMath 4 жыл бұрын
What is Bezout Theorem?
@АзизханУмархужаев-з8з
@АзизханУмархужаев-з8з 4 жыл бұрын
Sorry. rational root theorem
@shanmugasundaram9688
@shanmugasundaram9688 4 жыл бұрын
"x" is the inverse of the golden ratio.
@SyberMath
@SyberMath 4 жыл бұрын
Yess
@박신영-r2n8y
@박신영-r2n8y 3 жыл бұрын
@SyberMath
@SyberMath 3 жыл бұрын
🥰
Simplifying a Golden Radical Expression in Two Ways
12:35
SyberMath
Рет қаралды 39 М.
A nonic equation with a radical
14:37
SyberMath
Рет қаралды 43 М.
My scorpion was taken away from me 😢
00:55
TyphoonFast 5
Рет қаралды 2,7 МЛН
We Attempted The Impossible 😱
00:54
Topper Guild
Рет қаралды 56 МЛН
Мясо вегана? 🧐 @Whatthefshow
01:01
История одного вокалиста
Рет қаралды 7 МЛН
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН
A Quintic Diophantine Equation (x^5-y^5=1993)
15:50
SyberMath
Рет қаралды 47 М.
An Interesting System of Polynomials 😮
10:32
SyberMath
Рет қаралды 1,1 М.
The Golden Ratio (why it is so irrational) - Numberphile
15:13
Numberphile
Рет қаралды 3,7 МЛН
All possible pythagorean triples, visualized
16:58
3Blue1Brown
Рет қаралды 3,9 МЛН
Find the Area of this Triangle | Step-by-Step Tutorial
11:29
PreMath
Рет қаралды 783 М.
A Functional Equation from Putnam and Beyond
12:07
SyberMath
Рет қаралды 273 М.
How to solve a clever sum of sums problem
7:45
MindYourDecisions
Рет қаралды 440 М.
A tricky problem with a "divine" answer!
4:38
MindYourDecisions
Рет қаралды 807 М.
A Quintic Equation Solved Without The Quintic Formula
14:01
SyberMath
Рет қаралды 103 М.
My scorpion was taken away from me 😢
00:55
TyphoonFast 5
Рет қаралды 2,7 МЛН