Solving A Non-Standard Equation

  Рет қаралды 21,746

SyberMath

SyberMath

Күн бұрын

Пікірлер: 53
@kappasphere
@kappasphere Жыл бұрын
One thing that's been bugging me is that 1/2 - ln(sqrt(2)/2) can be simplified to 1/2 - ln(2^0.5) + ln(2) = 1/2 - 1/2 ln(2) + ln(2) = 1/2 (1 + ln(2))
@usdescartes
@usdescartes Жыл бұрын
Better than that, even. 1/2 (1 + ln 2) = 1/2 (ln e + ln 2) = 1/2 ln 2e = ln√(2e) That's actually kinda nice-looking!
@xyz.ijk.
@xyz.ijk. Жыл бұрын
That was excellent. Thank you. I may have some catch-up work to do, but overall I understood where you were going.
@SyberMath
@SyberMath Жыл бұрын
Glad it was helpful!
@Vemu
@Vemu Жыл бұрын
What's the program you're using for writing?
@guystuart4095
@guystuart4095 Жыл бұрын
Yes, the app for drawing the graphs. Very nice graphs!
@guystuart4095
@guystuart4095 Жыл бұрын
I see it, desmos
@tharunsankar4926
@tharunsankar4926 Жыл бұрын
Desmos
@leesweets4110
@leesweets4110 Жыл бұрын
ChatGPT is doing his scripts now.
@SyberMath
@SyberMath Жыл бұрын
Notability
@RashmiRay-c1y
@RashmiRay-c1y Жыл бұрын
Squaring both sides and following some straightforward manipulations, we can write x = -a -1/2 W(-2e^(-2a)), where W is the Lambert W function. For a less than roughly .7, there won't be any real solutions. But for a =1, W_(-1) gives x=0 and W_(0) gives x = -.8. Thus we will expect 2 solutions.
@yoav613
@yoav613 Жыл бұрын
Nice! I think it is more simple to solve this if you notice that this eq is: e^(2x)-x=a, then using simple calc we see that the function e^(2x)-x has 1 minimum point at (-0.5ln2, 0.5(1+ln2)). Therfore for tangent a=0.5(1+ln2),and if a>0.5(1+ln2) there are 2 intersection points and ifa
@leif1075
@leif1075 Жыл бұрын
What about other solutions if a equals 1 x can equal zero?
@premkumarsr4021
@premkumarsr4021 Жыл бұрын
Beautiful. Lovely. No words to express my happiness
@SyberMath
@SyberMath Жыл бұрын
Thanks a lot 😊🤩🧡
@popitripodi573
@popitripodi573 Жыл бұрын
Very interesting equation ❤❤❤❤
@SyberMath
@SyberMath Жыл бұрын
Glad you think so!
@bassem.al-ashour
@bassem.al-ashour Жыл бұрын
When squatting both sides, you get e^2x=x+a (×+a)=e^2×......divide both sides by e^2x to get (x+a)e^(-2×)=1.....multiply both sides by e^(-2a) to get (×+a)e^(-2x-2a)=e^(-2a) (×+a)e^[-2(x+a)]=e^(-2a)......multiply both sides by -2 to get -2(×+a)e^[-2(x+a)]=-2e^(-2a)......Lumbert both sides to get -2(×+a)=W(-2e^(-2a)) x+a=-[W(-2e^(-2a))]/2 x=-[W(2e^(-2a))]/2-a
@scottleung9587
@scottleung9587 Жыл бұрын
Cool!
@ilanbar1970
@ilanbar1970 Жыл бұрын
Nice!
@SyberMath
@SyberMath Жыл бұрын
Thanks!
@ardiris2715
@ardiris2715 Жыл бұрын
ChatGPT suggested the bisection route, and then quit. (:
@AbdulRahmanAttari
@AbdulRahmanAttari Жыл бұрын
❤❤
@SyberMath
@SyberMath Жыл бұрын
Thank you! 💗
@srividhyamoorthy761
@srividhyamoorthy761 Жыл бұрын
Ooh interesting Edit very interesting
@SyberMath
@SyberMath Жыл бұрын
Glad you think so!
@attila3028
@attila3028 Жыл бұрын
if you solved what is x in terms of a
@oakpope
@oakpope Жыл бұрын
And so, you didn't solve the equation.
@jonasvuillemin9412
@jonasvuillemin9412 Жыл бұрын
U didn’t solve it, u have 2 other possibilty depending on the value of a and btw u didn’t prove that u can derivate g
@barakathaider6333
@barakathaider6333 Жыл бұрын
👍
@sphakamisozondi
@sphakamisozondi Жыл бұрын
This is a delicious problem. Where can we get these types of math problems?
@talberger4305
@talberger4305 Жыл бұрын
X=-0.5×W(-2e^(-2a))-a
@rubensramos6458
@rubensramos6458 Жыл бұрын
Exactly.
@GreenMeansGOF
@GreenMeansGOF Жыл бұрын
Same
@tetramur8969
@tetramur8969 Жыл бұрын
I want Lambert's W function to be more popular and widely used
@GreenMeansGOF
@GreenMeansGOF Жыл бұрын
@@tetramur8969 The people have spoken, Syber😎
@srividhyamoorthy761
@srividhyamoorthy761 Жыл бұрын
@@tetramur8969 do agree with dat
@ParaNozek
@ParaNozek Жыл бұрын
ln(2e)/2
@leesweets4110
@leesweets4110 Жыл бұрын
Cant find books in English? HA, aint that the truth. You cant find videos on youtube in English, either, really. You either have a heavy accent or youre literally speaking Hindi or Japanese. The most advanced mathematics videos in English on youtube only go up to the addition of fractions.
@allanmarder456
@allanmarder456 Жыл бұрын
The solution using the Lambert W function is x= -[W(-2/(e^(2a)) +2a]/2. . To prove this, first square the original equation and get e^(2x) -x = a. Now let z be such that z*(e^z) = -2/(e^(2a)) Then x= -[z+2a]/2 So e^2x = e^(-[z+2a]) = e^(1/((e^z)*(e^2a)) =(1/e^z) * (z*(e^z)/(-2) = -z/2. Next subtract x and get = -z/2 - (-(z+2a/2)) = -z/2 +z/2 + a. =a. So for example if e^x = sqrt(x+2). we get W(-2/(e^4)) = =-.038052 and -4.895084 ( 2 answers). and x= -(.038052+4)/2 = - 1.98097 and x = - (-4.895084+4)/2 =.44754. Checking ( to 4 decimals) e^(-1.98097)=.1379 sqrt(-1.98097+2) =.1379. e^.44754 =1.5644 sqrt(2+.44754) = 1.5644.
@guystuart4095
@guystuart4095 Жыл бұрын
The number of parentheses in your expression for x do not match up. There are three “(“ and just two “)”.
@allanmarder456
@allanmarder456 Жыл бұрын
@@guystuart4095 Corrected
@guystuart4095
@guystuart4095 Жыл бұрын
I am trying to learn more about the Lambert W function. Can you give me a hint on why you chose z such that z*e^z = -2/e^2a. I am kind of stuck on this point. Just a hint? Thanks, Guy
@guystuart4095
@guystuart4095 Жыл бұрын
I figured another way to find Lambert W function. Square both sides of original equation and then div both sides by e^2x. Define y=x+a and manipulate until you have -2y e^-2y = -2e^-2a. Take the W function of both sides and you are home free.
@allanmarder456
@allanmarder456 Жыл бұрын
@@guystuart4095 Thanks for your reply. There are many different ways to manipulate an equation to make it work with the Lambert function. If you search online you can find many examples of types of equations that can be solved via Lambert. As you have shown sometimes it's just a question of manipulating things until you get what you want. That's what I do. Again thanks for your comment.
Simplifying An Exponential Expression
3:33
SyberMath
Рет қаралды 17 М.
A Very Interesting Rational Equation
12:43
SyberMath
Рет қаралды 3,3 М.
小丑教训坏蛋 #小丑 #天使 #shorts
00:49
好人小丑
Рет қаралды 54 МЛН
BASIC Calculus - Understand Why Calculus is so POWERFUL!
18:11
TabletClass Math
Рет қаралды 1 МЛН
A Quick and EZ Functional Equation | The Wrong Way!  😮
9:38
A Homemade Exponential Equation | SyberMath
7:39
SyberMath
Рет қаралды 22 М.
A Nice Homemade Polynomial System
10:52
SyberMath
Рет қаралды 1,8 М.
Do we even need the real numbers??
26:14
Michael Penn
Рет қаралды 59 М.
Lambert W Function
14:35
Prime Newtons
Рет қаралды 703 М.
solving equations but they get increasingly awesome
10:44
blackpenredpen
Рет қаралды 1,1 МЛН
What does it feel like to invent math?
15:08
3Blue1Brown
Рет қаралды 4,2 МЛН