Level up your data science skills with courses, projects, and competitions offered by DataCamp! Use my link below and check out the first chapter of any course for FREE! :) datacamp.pxf.io/c/3588040/1012793/13294
@masternobody18962 жыл бұрын
can you do some google job coding. so how can i get a job
@KeithGalli2 жыл бұрын
Big shout-out to my mom for not throwing away my Legos! She's the real MVP
@bobbyg6032 жыл бұрын
Thanks mom!
@vishwasjajpura7962 жыл бұрын
Finally Keith will build his LEGO
@ocraking10 ай бұрын
nice Kevin Durant reference
@KenJee_ds2 жыл бұрын
dude, loved the intro!
@KeithGalli2 жыл бұрын
Hahaha thanks man :). Very happy that my mom didn't throw out all of my legos!
@markomarjanovic8348 Жыл бұрын
Absolutely love the raw natural style you are doing, hope everyone else appreciates it too, keep going buddy, you are amazing!
@DataProfessor2 жыл бұрын
Wow the Lego stop motion was awesome!
@ahsanshah18662 жыл бұрын
Data professor is here 😀
@rafaelmello81942 жыл бұрын
I'm a begginer in Python and I'm learning a lot from you. You are an awesome teacher. Your pacing and didactic are perfect. Thanks a lot for your effort
@rksingh1997mp2 жыл бұрын
He’s back baby!!
@alan65063052 жыл бұрын
God, this is brilliant. I watched the other two videos of yours on Pandas. You are a great teacher and friend. Thank you very much for your hard work and kindness.
@simonvanwijk51782 жыл бұрын
Man so good to have you back! If it was not for you I would have not gotten a role as a DA as you helped me the most in the beginning.
@lVaNeSsA902 жыл бұрын
Thanks for being honest while you search for syntax in the beginning. Love this raw, step by step video. I'm using your videos on my project to get inspired ❤️ thanks for being a good tutor 😊
@logannon2 жыл бұрын
Dude, I thought you were dead. Your videos have helped me so much. Glad to see you back!
@leomiao59592 жыл бұрын
The man is back. The hero is back for us!!
@thebeeskhakis71452 жыл бұрын
I'm so happy you're back. Your videos helped me get my new job!
@FIBONACCIVEGA2 жыл бұрын
This video has been a true inspiration to continue learning. I'm doing the datacamp since I want to change my field and I've always liked programming and analyzing data. But he didn't know if he could use the learned knowledge to use it in real life. Now I know that everything I have learned is what is used in real life data analysis. Saludos
@amansorout.67792 жыл бұрын
Happy to see you back, fighting with something serious, you are not alone.
@weitingteng32412 жыл бұрын
Great great and great to see you back
@stratascratch2 жыл бұрын
Good to see you’re back!
@JW-pu1uk2 жыл бұрын
I really like the thought process in these videos. It's very raw, and really will translate well to an actual work project.
@PaYaMv22 жыл бұрын
Good to have you back my dude! Loooooooved this!
@danielsantoyo26402 жыл бұрын
Im so happy to see you are back! Panda and Numpy tutorials would be great !!! I’m currently trying to learn panda and numpy for data analytics and this video was super interesting !!! Thanks Keith keep going you are doing great 💯
@Omzodijacky2 жыл бұрын
Man , I'm happy you are back ! you were truly missed
@H99x22 жыл бұрын
These type of videos are your strengths! Great tutorial and explanation Keith
@YunusFidan_2 жыл бұрын
Good to see you uploading again!!
@cyrilodoi68682 жыл бұрын
So good to have you back man! 💯
@terrytas132 жыл бұрын
Welcome back Keith, so good to see your face again. Stay well my friend!
@KeithGalli2 жыл бұрын
Glad to be back!! :)
@qalinlekhaliif55182 жыл бұрын
Thanks a lot man. Your videos are helpful and entertaining as well. We appreciate your great work.
@Sensei102382 жыл бұрын
Finally back! It helped me a lot in learning python! Thank you so much!
@ben-tiki2 жыл бұрын
Another great video Keith! Glad to see yo back. Awesome that you got to work with datacamp. Please if you can make a video o OpenAI it would be awesome. Ive been using their API and its awesome
@itsReshad2 жыл бұрын
Love the great content! Please dont stop! You have an impeccable way of teaching its amazing
@tuandino69902 жыл бұрын
I've been waiting for this
@MashiroRedo2 жыл бұрын
Waited so long! Thank you
@ocraking10 ай бұрын
Dude, you ROCK
@terrytas132 жыл бұрын
Love the introduction!!!
@Viralvlogvideos2 жыл бұрын
welcome back to your first tutorial after long back :P
@kartikeyasharma99082 жыл бұрын
Hi Keith, loving the video tutorials!
@dharshankumar25222 жыл бұрын
Keith is back...yeahhhh
@1990andstillgoing2 жыл бұрын
props for sharing your knowledge man, its really easy to understand and apply what you're doing (Y)
@Magmatic912 жыл бұрын
Did this project on DataCamp. Was a lot of fun.
@rafaelcastellarmartinez34982 жыл бұрын
Hi Keith, just tried to do the project with you and i got that Star Wars was not the most popular theme in 2004 - Harry Potter and 2017 - Super Heroes, weird that datcamp test said ok, but i did the math manually and harry potter was the most popular in 2004, thanks for your videos. an student from Colombia Latin America!
@adelekeemmanuel4917 Жыл бұрын
omg... i just did the exercise myself and i discovered the same thing too... Came ti check the video but im seeing something else
@manfungnewmanyu14262 жыл бұрын
Yeah!!! Your tutorial is very great and help me so much at the AI master course .
@putyah2 жыл бұрын
Awesome video. Small detail: On the new era answer you typed the variable in. It would be nicer to drop every value that is Star Wars. Next select the remaining year as an variable. When the dataset is changed the variable is dynamic so the answer would still be correct.
@KeithGalli2 жыл бұрын
Good suggestion! I agree that would be a better way to go about it :)
@lucaspioli79702 жыл бұрын
Love your videos! Keep going
@sanjeetlal18732 жыл бұрын
Legend's back❤️
@baggid62572 жыл бұрын
He is back~!
@jongcheulkim72842 жыл бұрын
Thank you, sir. I had lots of fun^^
@azrmuradl64202 жыл бұрын
Please provide more such kind of videos, or as you always do, give us tips about how we can find such kind of real world ds projects online.
@ДимитърСираков-щ7ы2 жыл бұрын
keep up the good work!
@tuandino69902 жыл бұрын
Question 2: theme_count_by_year = licensed_lego_set.groupby('year')['parent_theme'].value_counts().unstack() theme_count_by_year.fillna(0, inplace=True) theme_count_by_year = pd.DataFrame.transpose(theme_count_by_year) Or you can use pivot_table function. By approaching in this way you can create a data frame that's easy to do plot (heatmap) and make high number pops out.
@tuandino69902 жыл бұрын
@Josh Yorko nice
@davida992 жыл бұрын
Yoooo love the vids
@codewithkarthik71362 жыл бұрын
nice video keith
@aditiparashar9171 Жыл бұрын
you are freakingly smart!
@kotharidhruv752 жыл бұрын
w8ing fr more such videos
@kirubaselvi67542 жыл бұрын
Keith, Pytorch tutorial please
@KeithGalli2 жыл бұрын
I definitely want to! I need to spend considerable time reviewing and building up my own PyTorch skills before I make a tutorial on it.
@freddy4videos2 жыл бұрын
thank you, much love
@ChileHeroico2 жыл бұрын
keep doing more videos pls :D
@rodrigo100kk2 жыл бұрын
This dude is cool, this chanel too.
@Levy9572 жыл бұрын
that task #2 was really hard to do alone
@merterisen2 жыл бұрын
16:52 how did you change 'Star wars' text immediately?
@KeithGalli2 жыл бұрын
Lol that was just video editing xD.
@admonitoring-pi9os9 ай бұрын
Hello there. I hope you are good. I am a little late with this comment because this video is already more than 2 years old but since i have started learning python now its the right time for me. where can i find the codes you explained in the video bcz no code is availbale in the project file at the github provided link.
@guisande2 жыл бұрын
Hey Keith, I'm divided between going towards data science or cyber security. I love both but I kinda needs to make money by now. Do you think I can own money in a short time in data science? Working as a freelancer or supporting small companies... Edit: I'm glad that you came back. Really love your videos
@adeshmishra16712 жыл бұрын
Go for Cybersecurity brother, Since difficulty level is medium.. But while earning 💰 you can also learn data scientist!!
@ratchakoon2 жыл бұрын
themes.csv which you provided on github does not have 'is_licensed' field. Is 'parent_id' filed as same as 'is_licensed' field?
@KeithGalli2 жыл бұрын
A little confusing, but you want to use parent_themes.csv, not themes.csv !!
@ratchakoon2 жыл бұрын
@@KeithGalli Thank you
@raghavgoyal33242 жыл бұрын
please upload a project every week
@KeithGalli2 жыл бұрын
I'll try my best!
@damarbowo2 жыл бұрын
Can I see your membership playlist? I can't find that playlist
@KeithGalli2 жыл бұрын
Hmm I'm not sure what you are asking to see, can you clarify?
@damarbowo2 жыл бұрын
@@KeithGalli you have a membership benefits. One of the benefit is got playlist or videos for member. Do you have an example the video or playlist for member join your channel? Hope you understand
@KeithGalli2 жыл бұрын
I just started my memberships last week so I haven't posted any exclusive videos there yet. To get an idea of the types of content I'll post there, check out these videos kzbin.info/www/bejne/p5-2d2uPlrWrbZo kzbin.info/www/bejne/hZyooIN_hNypnsk
@damarbowo2 жыл бұрын
@@KeithGalli I'll wait Keith. Regards
@KeithGalli2 жыл бұрын
Sounds good!
@shahoftrading2 жыл бұрын
question: when you merge when using left_on and right_on ...we get the merged df. So for the merged df and under parent_theme why are most if not all of those are "Legoland" and all IDs are 411? also how do we check the full tabular data -- print(df)?
@baburamchaudhary1592 жыл бұрын
in line [99] ie. .groupby(['year', 'parent_theme']) and in next line: .drop_duplilcates(['year']) since we already have grouped by 'year' and 'parent_theme' [I think, it groups unique year and parent_theme] why do we need to drop duplicates by 'year'?
@БулатМиннуллин-р8щ2 жыл бұрын
why didn't you use .agg?
@gopikaprasad8607 Жыл бұрын
How to export the for loops result into excel?? Please reply
@gersonchadijunior74992 жыл бұрын
Hey Keith, I love so much your videos. I've been learning Pandas with you since your pokemon's video, but I feel that the last answer is not accurate and in fact the right year should be 2006, because it was the year with less Star Wars Sets released. Can I send you my code somehow?
@ElianMrl2 жыл бұрын
Hey guys, would it be a good idea to use Datacamp projects in my resume?
@nitiknayyar76592 жыл бұрын
Damn I also started this project on Datacamp.
@alkiviadessavoullis20212 жыл бұрын
does anyone know why when I press continue or start project the Python Use python ... code checks gets highlighted pink and I can't work on the project ?
@zeasammy75722 жыл бұрын
Does DataCamp have video learning platform?
@KeithGalli2 жыл бұрын
The typical structure of classes is short videos that overview the concepts and then a bunch of interactive problems with a code editor to drill down the technical side of those concepts.
@sabbirahmed80122 жыл бұрын
Hello Keith, can you please mention some resource to master natural language processing?
@KeithGalli2 жыл бұрын
Hey! I actually did a PyCon lecture on NLP. That should be pretty helpful: kzbin.info/www/bejne/rKqymIqerLqgm8U
@clayherz_ Жыл бұрын
if i solve the second question with this code, counted_2 = licensed_sets.groupby(["year", "parent_theme"])[["is_licensed"]].count() counted_2 = counted_2.reset_index().sort_values("is_licensed", ascending=False) counted_2.drop_duplicates("year").sort_values("year", ascending=True) is it wrong
@letsjoinhands2 жыл бұрын
hello again Keith. For Q#2 I am getting a different result for new_era using this code: So the lego_all_lic is the DF containing all licensed lego set themes with the shape (1179 x 8) and that has been grouped by year to form lego_all_lic_yr. And the rest of the code I have written is quite simple to understand. Looks as if I have made a big mistake in aggregation but can't seem to locate it. lego_all_lic_yr = pd.DataFrame(lego_all_lic.groupby(by = ['year', 'parent_theme'], axis = 0).agg(Parent_Theme = ('set_num', 'count'))) lego_all_lic_yr.reset_index( inplace = True) lego_all_lic_yr.replace(to_replace = [theme for theme in lego_all_lic_yr['parent_theme'] if theme != 'Star Wars'], value = 'Others', inplace = True) lego_all_lic_yr = pd.DataFrame(lego_all_lic_yr.groupby(by = ['year', 'parent_theme'], axis = 0).agg(Parent_Theme = ('Parent_Theme', 'sum'))) lego_all_lic_yr When you look at the result it shows that 2006 was the first year in which Star Wars lost to other themes in terms of the sets released in that year.
@letsjoinhands2 жыл бұрын
Ok so I misunderstood the Q basically. It wasn't about Star Wars themed sets vs All The Rest rather it the year in which Star Wars lost out to some other individual theme. Got the correct answer using: lego_all_lic_yr = pd.DataFrame(lego_all_lic.groupby(by = ['year', 'parent_theme'], axis = 0).agg(Parent_Theme = ('set_num', 'count'))) lego_all_lic_yr.reset_index( inplace = True) lego_all_lic_yr = pd.DataFrame(lego_all_lic_yr.groupby(by = ['year', 'parent_theme'], axis = 0).agg(Parent_Theme = ('Parent_Theme', 'sum'))) lego_all_lic_yr = lego_all_lic_yr.sort_values(by = ['year','Parent_Theme'], ascending = False) lego_all_lic_yr.head(50)
@manu93ize2 жыл бұрын
bro Can you do a tutorial on data cleaning with Pyspark with real world example.
@mufasao67762 жыл бұрын
I see that you posted some of your hidden videos. Thank you.
@rabinmainali33732 жыл бұрын
I done it in following ways:(question 2) 1. i count each licenced film released every year. 2.Then count the only star wars film released every year 3.And i calculate the proportion of step2 and step1. Is it okey ? ,by the way the result is also 2017 for me.
@Silly_Duck_Guy Жыл бұрын
keith moment
@letsjoinhands2 жыл бұрын
Hi Keith! this is how I solved Q # 1. Pls let me know if this is a bad coding practice, is acceptable or is good in your opinion. so I first made a function called is_lic. def is_lic(df_1, df_2): df_1['is_licensed'] = bool theme_1 = list(df_1['parent_theme']) theme_2 = list(df_2['name']) lic_status = list(df_2['is_licensed']) for i, s in enumerate(theme_1): for r, t in enumerate(theme_2): if s == t: df_1['is_licensed'][i] = lic_status[r] Then is_lic(lego_sets, lego_themes) Then all_themes = [ ] for r in lego_sets.itertuples(): all_themes.append([ r[6], r[1], r[7] ]). Then all_lic_themes = [x for [x, y, z] in all_themes if y is not np.NaN and z == True] star_wars = [theme for theme in all_lic_themes if theme == 'Star Wars'] the_force = int(len(star_wars)/len(all_lic_themes) * 100) the_force = 51%
@KeithGalli2 жыл бұрын
So my biggest recommendation based on your code is to be more explicit with how you name your variables. So instead of "df_1" & "df_2" you might name those dataframes "parent_themes_df" & "lego_sets_df" respectively. Furthermore it would be better to name variables "i" & "s" something like "parent_theme_index" & "parent_theme_value". These types of changes will make your code more readable. Functionally, everything looks sound though. Nice work!
@letsjoinhands2 жыл бұрын
@@KeithGalli thanks a bunch Keith. and now in retrospect when I think about how you were working on solving this Q in the video I realised that all the time you were using pandas built in methods to solve the Q. so yes we could use a smattering of python methods to do this (like I did) but using that libraries' built-in methods would be more simpler and advantageous most of the times. Is that correct?
@igor-xadrezxadrez85412 жыл бұрын
Hey, there's a red dot on your nose.
@KeithGalli2 жыл бұрын
I got in a fight playing hockey!
@Viralvlogvideos2 жыл бұрын
Big nose :P
@AbhishekSharma-hy4nl2 жыл бұрын
Bro what happened to your nose😟?
@KeithGalli2 жыл бұрын
Got into a little fight playing ice hockey! We won the game though so it's cool xD