A proof of the weak law of large numbers

  Рет қаралды 61,923

Ben Lambert

Ben Lambert

Күн бұрын

This video provides an explanation of the proof of the weak law of large numbers, using Chebyshev's inequality in the derivation. Check out ben-lambert.co... for course materials, and information regarding updates on each of the courses. Quite excitingly (for me at least), I am about to publish a whole series of new videos on Bayesian statistics on youtube. See here for information: ben-lambert.co... Accompanying this series, there will be a book: www.amazon.co....

Пікірлер: 27
@elenalenaiva
@elenalenaiva 7 жыл бұрын
oh wow. that's the best and cleanest explanation ever, big plus for color use - it makes everything very clear and easy to understand.
@SpartacanUsuals
@SpartacanUsuals 11 жыл бұрын
Hi, thanks for your comment - glad to hear they are useful. The reason it is N^2 is that the variance of a scalar times a random variable is that scalar squared times the variance of the random variable. This is because the variance is defined as E[(X-mu)^2] - in other words it is an operator which is quadratic in nature. Hope that helps! Ben
@inthecillage9213
@inthecillage9213 6 жыл бұрын
A tonic one day before exam! Thanks sir!
@eddie.carrera
@eddie.carrera 10 ай бұрын
Nice! Thank you! I saw this at college, but forgot about how the proof was made. Chebyshev inequality 😮😮 interesting
@kotsaris87
@kotsaris87 8 жыл бұрын
00:28 That's an epsilon, not an eta
@RealMcDudu
@RealMcDudu 5 жыл бұрын
could be xi as well :-)
@lecothers
@lecothers 3 жыл бұрын
@@RealMcDudu read as hi :D
@lecothers
@lecothers 3 жыл бұрын
It was short and useful thanks a lot Ben!!
@lucasmoratoaraujo8433
@lucasmoratoaraujo8433 2 жыл бұрын
Thank you for the explanation!
@fiazahmed5477
@fiazahmed5477 9 жыл бұрын
Thanks, great video, very well explained.
@adamBUFC
@adamBUFC 11 жыл бұрын
Hi - thanks for these great videos, I'm finding them really useful alongside my graduate course in econometrics. I was just wondering why (at 2.20 in the video) when you take the variance of X(n)bar the denominator becomes N^2 rather than just N? I may be missing something obvious. Thanks in advance!
@jeongsungmin2023
@jeongsungmin2023 6 ай бұрын
I’m a bit overdue for this but I’ll answer in case other ppl see this reply. First, expand the Var(X bar) = Var(X1/N + X2/N + … + Xn/N) Then by the linearity of variances, Var(X1/N) + Var(X2/N) + … + Var(Xn/N) Each of these Xi are assumably iid so no covariances are added. If these Xi were dependent then add the 2 sigma Cov(Xi,Xj) term to the sum above. Anyways with the iid case: Var(Xi/N) = E((Xi/N)^2) - E(Xi/N)^2 from Var(A) = EX^2 - E^2X Then with some simple factorisation. Var(Xi/N) = (1/N^2)(E(Xi^2) - E^2(Xi)) = Var(Xi)/N^2 Therefore: Var(X1/N) + Var(X2/N) + … + Var(Xn/N) = (1/N^2)(N*Var(Xi))
@takudzwamukutairi7284
@takudzwamukutairi7284 5 жыл бұрын
well done ................thats a good explanation
@stathius
@stathius 2 жыл бұрын
Thanks a lot for the videos. I'm not sure why you assume all the samples will have variance sigma. Isn't that a r.v. in itself?
@rudrakshtuwani4567
@rudrakshtuwani4567 9 жыл бұрын
Great video! Thanks a lot!
@ben_lama
@ben_lama 3 жыл бұрын
doesn't this assume that the X_i's are L^2 RVs? The WLLN should hold even if the variance is undefined...
@mariogonzalezsauri4632
@mariogonzalezsauri4632 8 жыл бұрын
Can you elaborate more on how the variance of the sample mean equals 1/N^2 sum(Var(xi))=sigma^2/N. Its not clear for me.
@samuelbassey6806
@samuelbassey6806 6 ай бұрын
Thanks for sharing
@albertkirsten8407
@albertkirsten8407 Жыл бұрын
Thank you!
@jsh429
@jsh429 9 жыл бұрын
Awesome. Thank you for the video.
@anharsaif8395
@anharsaif8395 3 жыл бұрын
Thank you!!
@Carterv3
@Carterv3 10 жыл бұрын
is Khinchine's weak law of large numbers only the one with homogeneous variances? Thanks
@miodraglovric5093
@miodraglovric5093 5 жыл бұрын
You should read "Brave new world", to learn about alpha, beta and epsilon people! Also, in Statistics, we use lower case n to denote the sample size, not N (N is the population size). Best :)
@askarm588
@askarm588 10 жыл бұрын
Dear Ben, Firstly, thank you very much for your great videos Secondly, I would be very grateful if you explain last derivations. As far as I understand, Xn is a constant (sample mean). If it is constant, how you calculate the variance of Xn? I think the general question is about the nature of Xn. Best regards,
@ivcbtg
@ivcbtg 10 жыл бұрын
Xn is not a constant since it changes when the sample size n changes. you can use the property of variance, i.e. Var(aX1+bX2)=(a^2)Var(X1)+(b^2)Var(X2) there is no Covariance terms assuming independence of Xi's. Also Var(X1)=Var(X2)=......=Var(Xi) for all i assuming identical distribution of Xi's
@cameronmiller4144
@cameronmiller4144 4 жыл бұрын
very helpful
@hanxiongwang3406
@hanxiongwang3406 8 жыл бұрын
thank you very much
Convergence in probability of a random variable
5:47
Ben Lambert
Рет қаралды 108 М.
The Law of Large Numbers - Explained
6:32
NStatum
Рет қаралды 25 М.
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН
小丑教训坏蛋 #小丑 #天使 #shorts
00:49
好人小丑
Рет қаралды 54 МЛН
Cat mode and a glass of water #family #humor #fun
00:22
Kotiki_Z
Рет қаралды 42 МЛН
Bayes theorem, the geometry of changing beliefs
15:11
3Blue1Brown
Рет қаралды 4,6 МЛН
AI, apps, cars: Is China taking the lead in tech? - BBC World Service
7:07
L18.4 The Weak Law of Large Numbers
7:31
MIT OpenCourseWare
Рет қаралды 109 М.
Central Limit Theorems: An Introduction
11:20
Ben Lambert
Рет қаралды 45 М.
Markov's Inequality ... Made Easy!
9:25
Learn Statistics with Brian
Рет қаралды 24 М.
The Bayesian Trap
10:37
Veritasium
Рет қаралды 4,2 МЛН
But what is the Central Limit Theorem?
31:15
3Blue1Brown
Рет қаралды 3,7 МЛН
Characteristic functions introduction
6:06
Ben Lambert
Рет қаралды 73 М.
Law of Large Numbers - Explained and Visualized
4:18
Jeremy Blitz-Jones
Рет қаралды 241 М.
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН