Spring 2016 Section 7 (Bayes Nets + Variable Elimination) Solutions

  Рет қаралды 6,856

Berkeley AI

Berkeley AI

Күн бұрын

Пікірлер: 7
@zaman866
@zaman866 8 жыл бұрын
Thanks for video. I am just wondering how we normalize to sum to 1 in part g. Can you give any numerical example? Thanks
@hansen1101
@hansen1101 8 жыл бұрын
+Zs Sj assume f5 gives you a vector with 2 entries for +y and -y, say [1/5, 3/5]. to normalize this vector simply divide each coordinate by the sum of all coordinates [1/5 * 5/4 , 3/5 * 5/4] = [1/4, 3/4]
@zaman866
@zaman866 8 жыл бұрын
Thanks
@zaman866
@zaman866 8 жыл бұрын
hansen1101 do you know why we should normalize this and how this became non-normalized one?
@hansen1101
@hansen1101 8 жыл бұрын
+Zs Sj in this particular case you are calculating a distribution of the form P(Q|e) where e is an instantiation of some evidence variables. By definition this form has to sum to 1 over all instances of the query variable Q (i.e. P(q1|e) + P(q2|e) = 1 in the binary case). Be careful, there are queries of other forms that need not sum to 1 and therefore normalization is not necessary (i.e P(Q,e) or P(e|Q)). This became non normalized after applying Baye's rule and only working with the term in the numerator, leavin out the joint prob. over the instantiated evidence vars in the denominator. Therefore you'll have to rescale in the end.
@hansen1101
@hansen1101 8 жыл бұрын
concerning ex. 2f: isn't the largest factor generated 2^4? because the join on all factors containing T generates a table over 4 variables (say f2') of which one is summed out to get f2. so f2' has size 2^4
@user-ze4qq8mm1q
@user-ze4qq8mm1q 5 жыл бұрын
this is a good thought, but the given observation value of +z is a constant, not a variable, so although it is contained in f2(U, V, W, +z) the only variables of f2 are U, V, W, hence 2^3 = 8 .
Spring 2016 Section 7 (Bayes Nets + Variable Elimination) Overview
13:01
Spring 2016 Section 8 (Sampling + VPI) Overview
16:03
Berkeley AI
Рет қаралды 2,3 М.
ТЫ В ДЕТСТВЕ КОГДА ВЫПАЛ ЗУБ😂#shorts
00:59
BATEK_OFFICIAL
Рет қаралды 3,5 МЛН
Players vs Pitch 🤯
00:26
LE FOOT EN VIDÉO
Рет қаралды 124 МЛН
Wait… Maxim, did you just eat 8 BURGERS?!🍔😳| Free Fire Official
00:13
Garena Free Fire Global
Рет қаралды 9 МЛН
Happy birthday to you by Secret Vlog
00:12
Secret Vlog
Рет қаралды 6 МЛН
Lecture 16: Bayes Nets
1:11:41
CS188 Spring 2014
Рет қаралды 52 М.
Bayesian Networks
39:57
Bert Huang
Рет қаралды 320 М.
34.1 - Variable elimination example
16:18
Maxwell Libbrecht
Рет қаралды 1,9 М.
Spring 2016 Exam Section 5 Solution
29:16
Berkeley AI
Рет қаралды 2,6 М.
Variable Elimination
14:50
Pieter Abbeel
Рет қаралды 67 М.
Bayesian Networks: Conditional Independences and d-Separation
34:37
IIT Delhi July 2018
Рет қаралды 20 М.
Sampling from Bayes' Nets
25:08
Pieter Abbeel
Рет қаралды 51 М.
Lecture 18: Bayes Nets - Inference
1:05:38
CS188 Spring 2014
Рет қаралды 38 М.
The better way to do statistics
17:25
Very Normal
Рет қаралды 255 М.
6a. Inference by Variable Elimination I (Chapter 6)
35:31
UCLA Automated Reasoning Group
Рет қаралды 7 М.
ТЫ В ДЕТСТВЕ КОГДА ВЫПАЛ ЗУБ😂#shorts
00:59
BATEK_OFFICIAL
Рет қаралды 3,5 МЛН