Tapai ko video haru Sarai ramro cha bro! Keep up the good work.
@datasciencebasics Жыл бұрын
dhanyabaad :)
@praveenc2248 Жыл бұрын
Awesome, Thanks bro
@veeru1811 ай бұрын
how we could get answer in json format please advice
@python360 Жыл бұрын
Thank you, would querying a large database with say 1million row use up a lot of tokens / is there any for of caching that can be done with ChatGPT ?
@datasciencebasics Жыл бұрын
Hello, haven’t tested it out but you could try it out and have a look at OpenAI usage to see how it behaves.
@ИгорьТ-х6м4 ай бұрын
How does SQLDatabaseChain knows about the database structure (tables, etc)?
@hadjersa2810 ай бұрын
I made a function to compare between LLMs results and humans results. is sql Query already exist in the database or is it you who makes them ?
@datasciencebasics10 ай бұрын
SQL queries are created by LLMs when we ask the natural langauge.
@Anna00722 Жыл бұрын
Can we plot a graph of thr output data
@datasciencebasics Жыл бұрын
this is quite old video and I haven’t tried myself yet. Give a try with latest models.
@AliQureshi-n6g Жыл бұрын
Hi, thanks for the video. I have 2 questions: Question 1: what is the difference between "SQLDatabaseChain" and "SQLDatabaseToolkit"? Question 2: I get an error when i try using the create_sql_agent in the below code. toolkit = SQLDatabaseToolkit(db=db) agent_executor = create_sql_agent( llm=OpenAI(temperature=0), toolkit=toolkit, verbose=True ) ValidationError: 1 validation error for SQLDatabaseToolkit llm field required (type=value_error.missing) Can you please help here? Appretiate your help
@rajivraghunathan9104 Жыл бұрын
Excellent info ,,, pls do one video in querying JSON Documents . No one has done any video
@datasciencebasics Жыл бұрын
Hello, Created one, hope you find it helpful :)
@roberthuff3122 Жыл бұрын
Thank you. FUBAR! LOL
@colofthedead6101 Жыл бұрын
Unfortunately, in reality this functionality is very early days and doesn't work very well, generating joins across non-existent columns and SQL that is engine specific. It's only good for playing around with at the moment.
@datasciencebasics Жыл бұрын
I agree, hopefully more functionality in the future as llms and usecases around it are quite in early stage.
@colofthedead6101 Жыл бұрын
@@datasciencebasics I've persisted with this library and the more information about my database that I include in the prompt, the better the results. Less, denormalised tables help too. You can see the potential though and I've gotten some 'wow factor' from demoing it to management.
@datasciencebasics Жыл бұрын
@@colofthedead6101 Great findings. Eventually, everything in LLM ends in good prompt :)
@mariocuezzo8027 Жыл бұрын
nice video! i try this with ggml-gpt4all-l13b-snoozy.bin and i have this problem : SQLQuery:The prompt size exceeds the context window size and cannot be processed. The prompt size exceeds the context window size and cannot be processed. any ideas?