I'm a student for life....approaching 40.....never had the privilege of attending a university like Stanford. To get access to these quality lectures is amazing. Thank you
@Fracasse-0x134 ай бұрын
This is a quality lecture?
@KevinLanahan04 ай бұрын
@@Fracasse-0x13 for people who dont have access to education, yes, it is a quality lecture.
@darrondavis58483 ай бұрын
i am living my dreams
@shaohongchen10633 ай бұрын
@@Fracasse-0x13 why this is not a quality lecture?
@MyLordaizen3 ай бұрын
They all the same Everything is on the web you don't need certification to tell the world you know it Build the best
@paolacastillootoya89042 ай бұрын
He is doing his part to encourage women in STEM.
@ProgrammingWIthRileyАй бұрын
Women have always been in STEM. We all know about Grace Hopper. Please let this go.
@ProgrammingWIthRileyАй бұрын
Lookup Ruth David. She worked at the CIA redid all of their tech infrastructure and she’s still alive!
@fan82209Ай бұрын
haha absolutely
@astrolilloАй бұрын
vos queres un marido de stem nada
@OriginalimocАй бұрын
😮@@astrolillo
@nothing123925 ай бұрын
It is one thing to be a great research institution but to be a great research institution that is full of talented and kind lecturers is extremely impressive. I've been impressed by every single Stanford course and lecture I have participated in through SCPD and KZbin and this lecturer is no exception.
@stanfordonline5 ай бұрын
Thank you for sharing your positive experiences with our courses and lectures!
@a2ashrafАй бұрын
Wow, big words. Thank you for the comment, your words encouraged me to watch the whole thing and I don't regret it at all. Best decision!
@EduardoLima3 ай бұрын
We live in a tremendous moment in time. Free access to the best lectures on the most relevant topic from the best university
@stanfordonline2 ай бұрын
Thanks for your comment, we love to hear this feedback!
@devanshmishra-ez1tn3 ай бұрын
00:10 Building Large Language Models overview 02:21 Focus on data evaluation and systems in industry over architecture 06:25 Auto regressive language models predict the next word in a sentence. 08:26 Tokenizing text is crucial for language models 12:38 Training a large language model involves using a large corpus of text. 14:49 Tokenization process considerations 18:40 Tokenization improvement in GPT 4 for code understanding 20:31 Perplexity measures model hesitation between tokens 24:18 Comparing outputs and model prompting 26:15 Evaluation of language models can yield different results 30:15 Challenges in training large language models 32:06 Challenges in building large language models 35:57 Collecting real-world data is crucial for large language models 37:53 Challenges in building large language models 41:38 Scaling laws predict performance improvement with more data and larger models 43:33 Relationship between data, parameters, and compute 47:21 Importance of scaling laws in model performance 49:12 Quality of data matters more than architecture and losses in scaling laws 52:54 Inference for large language models is very expensive 54:54 Training large language models is costly 59:12 Post training aligns language models for AI assistant use 1:01:05 Supervised fine-tuning for large language models 1:04:50 Leveraging large language models for data generation and synthesis 1:06:49 Balancing data generation and human input for effective learning 1:10:23 Limitations of human abilities in generating large language models 1:12:12 Training language models to maximize human preference instead of cloning human behaviors. 1:16:06 Training reward model using softmax logits for human preferences. 1:18:02 Modeling optimization and challenges in large language models (LLMs) 1:21:49 Reinforcement learning models and potential benefits 1:23:44 Challenges with using humans for data annotation 1:27:21 LLMs are cost-effective and have better agreement with humans than humans themselves 1:29:12 Perplexity is not calibrated for large language models 1:33:00 Variance in performance of GPT-4 based on prompt specificity 1:34:51 Pre-training data plays a vital role in model initialization 1:38:32 Utilize GPUs efficiently with matrix multiplication 1:40:21 Utilizing 16 bits for faster training in deep learning 1:44:08 Building Large Language Models from scratch Crafted by Merlin AI.
@mz231716 күн бұрын
helpful
@bp30164 ай бұрын
Is my teachers in school looked this good, I wouldn't miss a single class. He's handsome af.
Thank you sir...i heartly appreciate it😊.... lecture was awesome 🤌
@junnishere004 ай бұрын
thankyou so much. i really appreciate it
@helloadventureworld4 ай бұрын
lecture was perfect. is there a playlist for the whole class of cs229 for the same semester as this video? all I have found was before 2022 which made me wondering
@yanndubois39144 ай бұрын
@@helloadventureworld no, the rest of CS229 has not been released and I don't know if it will. This is only the guest lecture.
@helloadventureworld4 ай бұрын
@@yanndubois3914 Thanks for the response and information you have shared :)
@wop130Ай бұрын
Damn. That lecturer is fineeee. 😍
@thedelicatehand3 ай бұрын
Suddenly I am interested in LLMS
@meelijah54742 ай бұрын
I might not know what you are saying but I have the same feeling as you lol.
@SimonaVermiglioАй бұрын
😂😂😂
@접니다-q6yАй бұрын
🤣🤣
@DonTiagoDonatoАй бұрын
Why the picture of Zé Pequeno ?
@emilycooper500Ай бұрын
😂
@SudipBishwakarma5 ай бұрын
This is really a great lecture, super dense but still digestible. Its not even been 2 years since ChatGPT was released to public and to see the rapid pace of research around LLMs and it getting better is really interesting. Thank you so much, now I have some papers to read to further my understanding.
@adamm2e19 күн бұрын
As someone who has worked in both corporations at the D and C-Level and someone who is a life long learner (studied at Harvard University and had one professor change my life in terms of CS, Malan) I am always impressed by how the technical knowledge of the lecturers and the ability to convey difficult to understand information is made possible through the Stanford CS, GSB and the associated schools. Quite grateful for the fact that you are sharing the next chapter in our paradigm shift (AGENTIC AI, et al) with our future leaders. 🎉🎉🎉
@anshdeshraj4 ай бұрын
finally a someone said Machine Learning instead of slapping AI on everything!
@duartesilva79073 ай бұрын
I feel that whenever someone talks about AI a lot it means that they know nothing about it
@paolacastillootoya89042 ай бұрын
Right? And a lot of people believing in Yubal Harari because of it
@ReflectionOcean5 ай бұрын
Insights By "YouSum Live" 00:00:05 Building large language models (LLMs) 00:00:59 Overview of LLM components 00:01:21 Importance of data in LLM training 00:02:59 Pre-training models on internet data 00:04:48 Language models predict word sequences 00:06:02 Auto-regressive models generate text 00:10:48 Tokenization is crucial for LLMs 00:19:12 Evaluation using perplexity 00:22:07 Challenges in evaluating LLMs 00:29:00 Data collection is a significant challenge 00:41:08 Scaling laws improve model performance 01:00:01 Post-training aligns models with user intent 01:02:26 Supervised fine-tuning enhances model responses 01:10:00 Reinforcement learning from human feedback 01:19:01 DPO simplifies reinforcement learning process 01:28:01 Evaluation of post-training models 01:37:20 System optimization for LLM training 01:39:05 Low precision improves GPU efficiency 01:41:38 Operator fusion enhances computational speed 01:44:23 Future considerations for LLM development Insights By "YouSum Live"
@dr.mikeybee5 ай бұрын
This is very well done. It's super easy to understand. I think your students should learn a lot. It's a great skill to be able to present complex material in a simple fashion. It means you really understand both the material and your audience.
@megharajpoot99302 ай бұрын
This course has so much of insights and a quick summary view of LLMs. I have also gone through coursera course paid one. This one is equally good and free. Thanks for the video.
@mukammedalimbet23513 ай бұрын
great! thanks for sharing! One thing i would suggest is to transcribe or add subtitle of questions that is being asked by the students. That way we could better understand the answer given by lecturer.
@majidmehmood37803 ай бұрын
people should first learn about basic language models like bigrams, unigrams. these were the first language models and stanford really has good lectures in it
@BMoRideNGrind3 ай бұрын
Really incredible delivery of complicated information. ❤
@김진혁-l4l2 ай бұрын
what a wonderful lectures...this 1.75 hour is one of the most valuable in my life
@SerhiiFedorov-v1l3 ай бұрын
Thank you for the video! I am glad that we live in this time and can witness the development of AI technologies.
@ludwingdb5 күн бұрын
Excellent Lecture. Thanks to my former colleagues at SCPD!
@Qxxliu3 ай бұрын
one good point when they discuss the difference between ppo and dpo is reward model can reduce the dependency of labeled preference data
@for-ever-225 ай бұрын
This is an amazing breakdown of the high level overview of an LLM’s. Every aspect of an LLM was mentioned. Thank you for this amazing video. I’ll come back here often
@NeerajSharma-yf4ih2 ай бұрын
I had the privilege of attending an insightful 90-minute lecture by Stanford faculty, which greatly boosted my confidence in completing my thesis. The approach they shared aligns closely with my own research methodology, reinforcing the direction of my work. Grateful for this inspiring experience!"
@sucim5 ай бұрын
Fabulous lecture! Goes into all important concepts and also highlights the interesting details that are commonly glossed over, thanks for recording!
@PratikBhavsar15 ай бұрын
Very informative, updated and crisp~ keep them coming..don't stop now!
@RaushanKumar-qb3de3 ай бұрын
Best explanation.. I'm watching at 3 am. Thanks
@sonudixit-h3w5 ай бұрын
Thanks a lot for sharing this. I would like to point a correction- time 20:28 - Consider case prob(true_token)
@yanndubois39145 ай бұрын
Yes that's correct, it's the baseline performance of a very bad language model.
@KelvinMeeks3 ай бұрын
Great talk. Loved the level of detail, the insights, the pacing.
@minhatvo824 ай бұрын
fantastic, wonderful, significant, magnificent, outstanding, class of titans, world-class🎉
@Nightsd013 ай бұрын
What an awesome video. Data quality is a real issue, and even more interestingly, LLM’s learn a lot like humans. Introduce the simpler concepts first (training data prompts) and then introduce more complex subjects, and the LLM’s learn more just like humans
@pkprasadtube2 ай бұрын
I love the way you answered the questions, very clear and precise.
@boeingpameesha95504 ай бұрын
My sincere thanks for sharing it.
@samratsakya3 ай бұрын
Thank you for the gem Standford Online. Great starter - Time to read more papers on LLMs
@davemas7018 күн бұрын
Very informative. Thank you for sharing!
@AnupSingh-kt5yn3 ай бұрын
Great & Comprehensive Presentation 🎉
@goldentime112 ай бұрын
Thanks for sharing this. It is a great introduction of the LLM system.
@brindaswayamprakasham21022 ай бұрын
this was genuinely interesting and easy to follow through, thanks!
@Mawfox_be_ite13 күн бұрын
Hey buddy, I hope you kept playing squash after you left Vancouver. Good too see you got into Stanford as you had hoped. Cheers, AK
@ProgrammingWIthRileyАй бұрын
Amazing lecture. Great job
@thunderbirdk3 ай бұрын
Wow! Such a wonderful presentation! Thanks so much!
@mohammedosman49025 ай бұрын
great lecture, wish the speaker had more time to go over the full presentation
@carvalhoribeiro4 ай бұрын
Great presentation and very helpful. Thanks for sharing this
@squidwardswift3 ай бұрын
Dayum he’s fine
@cui_11523 ай бұрын
Please give this dude 15more minutes, for Tiling, Flash Attention, Parallelization for data and model !!
@jay_wright_thats_right3 ай бұрын
If you know all of that, you don't need 15 more minutes.
@maximshaposhnikov79704 ай бұрын
What an amazing lecture, now want a part 2 about the topics that haven’t been touched upon 🤩
@bhoicebychoice5435Ай бұрын
Scaling behavior of LLM fine-tuning, emphasizes the importance of model size, task-specific considerations, and the trade-offs between different fine-tuning approaches. It highlights the need for practitioners to make informed decisions based on their specific needs and resources. As the field of LLMs continues to evolve, further research is needed to fully understand the complex interplay between model architecture, data, and fine-tuning strategies, especially at even larger scales. My research significantly contributes to the ongoing effort to develop more efficient and effective methods for adapting powerful LLMs to a wide range of downstream tasks.
@SuperLano984 ай бұрын
When will the other lectures be updated? This was so good!
@Joeystumbo25 күн бұрын
He is an alien, such brilliant and young human being. Impressed.
@luxbran5324 ай бұрын
Great lecture
@xiaoxiandong73823 ай бұрын
would love to see the other recordings of cs25!
@sahejagarwal8015 ай бұрын
Most amazing video ever
@meer.sohrab5 ай бұрын
The best one we want more
@zeep14dabs4 ай бұрын
this is amazing, can you guys make a playlist for begginers?. thank you!
@nomi67615 ай бұрын
How do people know that "adding more data" is not just increasing likelihood of training on something from the benchmarks, while "adding more parameters" is not just increasing the recall abilities (parametric memory capacity) of the model to retrieve benchmark stuff during evaluation? Really curious about that point.
@hamzadata5 ай бұрын
man this is amazing!
@danieleneh31933 ай бұрын
This is a gold mine
@beansforbrain3 ай бұрын
Looking forward to do a PostDoc from SU
@futurecharacteristics2 ай бұрын
It's never too late to get started for learning
@imalive4044 ай бұрын
@5:55 there is an approximation. it lies on the axioms. the axiom being probability should sum to 1. second the approximation is that distribution only comes out of the given corpora. The given corpora is the approximation of the total population. Which we all know has its own biases.
@cristovaoiglesias523Ай бұрын
The Chinchilla paper demonstrated that for a fixed FLOPs budget, smaller models trained on more data perform better than larger models trained on less data.
@AlphaVisionPro3 ай бұрын
You can build my ❤️
@kartikeychhipa38135 ай бұрын
Just Amazing!
@balajinadar15034 ай бұрын
Ignore this comment Day 1 19:05 Day 2 28:38 Day 3 41:05 Day 4 1:00:00
@namazbekbekzhan3 ай бұрын
00:10 Обзор создания больших языковых моделей 02:21 Сосредоточьтесь на оценке данных и системах на практике 06:25 Авторегрессивные языковые модели предсказывают следующее слово 08:26 Токенизация текста и размер словаря имеют решающее значение для языковых моделей. 12:38 Токенизация и обучение токенизаторов 14:49 Оптимизация процесса токенизации и решения по объединению токенов 18:40 GPT 4 улучшил токенизацию для лучшего понимания кода 20:31 Переплетение измеряет колебания модели между словами. 24:18 Оценка открытых вопросов является сложной задачей. 26:15 Различные способы оценки крупных языковых моделей 30:15 Шаги по предварительной обработке веб-данных для больших языковых моделей 32:06 Проблемы с обработкой дубликатов и фильтрацией низкокачественных документов в больших масштабах. 35:57 Сбор данных о мире имеет решающее значение для практических крупных языковых моделей. 37:53 Проблемы при предобучении крупных языковых моделей 41:38 Законы масштабирования предсказывают улучшение производительности с увеличением объема данных и размером моделей. 43:33 Вычисления определяются данными и параметрами. 47:21 Понимание значения законов масштабирования при создании больших языковых моделей 49:12 Хорошие данные имеют решающее значение для лучшего масштабирования. 52:54 Вывод для больших языковых моделей дорогой. 54:54 Обучение крупных языковых моделей требует высоких вычислительных затрат. 59:12 Большие языковые модели (LLM) требуют дообучения для выравнивания, чтобы стать AI-ассистентами. 1:01:05 Создание крупных языковых моделей (LLM) включает в себя тонкую настройку предварительно обученных моделей на желаемых данных. 1:04:50 Предобученные языковые модели оптимизируют под конкретные типы пользователей во время дообучения. 1:06:49 Сбалансирование генерации синтетических данных с человеческим вводом имеет решающее значение для эффективного обучения. 1:10:23 Проблемы в создании контента, превышающего человеческие способности 1:12:12 Генерация идеальных ответов с использованием максимизации предпочтений 1:16:06 Обучение модели вознаграждения с использованием логитов для непрерывных предпочтений 1:18:02 Обучение крупных языковых моделей с помощью ПО и проблемы в обучении с подкреплением 1:21:49 Обсуждение о методах обучения с подкреплением и их преимуществах в использовании моделей наград. 1:23:44 Проблемы использования людей в качестве аннотаторов данных 1:27:21 LLM более экономичны и предлагают лучшее согласие, чем люди. 1:29:12 Проблемы с перплексией и калибровкой в языковых моделях 1:33:00 Вариативность в производительности GPT-4 в зависимости от подсказок 1:34:51 Важность предобучения в больших языковых моделях 1:38:32 Использование ГПУ для умножения матриц может быть в 10 раз быстрее, но коммуникация и память играют ключевую роль. 1:40:21 Уменьшенная точность для более быстрой матричной умножения 1:44:08 Создание больших языковых моделей (ЯМП) Crafted by Merlin AI.
@sanjayg17283 ай бұрын
Could you please share the link to the lecture on Transformers that you were referring to in the video?
@keshmesh1233 ай бұрын
thank you! great lecture.
@sagemantaena11 күн бұрын
i’d never skip his class.
@FemiAdigun21 күн бұрын
Thank you for this.
@F3lp1s5 ай бұрын
So Amazing!
@Neilblaze5 ай бұрын
Great content, thanks!
@esamyakIndore3 ай бұрын
More lecture of Machine learning plz share
@enzoluispenagallegos54405 ай бұрын
Thank you for this
@web3global4 ай бұрын
Thank you! 🚀
@nataliatenoriomaia16353 ай бұрын
Can we please have access to the previous lecture about Transformers?
@MitatEfeÜnal-e3b2 ай бұрын
I don’t know what the guy is talking about but imma watch HIM
@RaushanKumar-qb3de2 ай бұрын
I like his teaching style and that laughter in between 😂😁🤙. Last one be careful heavyone
@perrystalsis1818Ай бұрын
I'm just trying to get started in ML. Good god. Do a you tube channel already. Really good. Or at least do some blog updates.
@SyedShayanAliShah3 ай бұрын
The reason Stanford graduate the rule the world
@njabulonzimande28933 ай бұрын
LLM - chatbots Architecture (Neural networks) Training algorithm Data Evaluation System
@shoaibyehya36005 ай бұрын
Impressive
@DonTiagoDonatoАй бұрын
From Brazil 🇧🇷
@alexmoonrock3 ай бұрын
This interests me but I have no coding experience. Any tips to where to start , surely Standford lectures ? Coding 101 I guess. Anything helps :)
@doomed52063 ай бұрын
suddenly i m interested in llms😗😗😗
@jdk9973 ай бұрын
Whoever records these videos need to leave the slides up longer for the viewers to read as the speaker explains the concepts.
@jsherdiana24 күн бұрын
Thank You
@SettimiTommaso5 ай бұрын
Yes!
@E.T.S.Ай бұрын
Thank you.
@cherryfan99875 ай бұрын
Thank u
@Zoronoa013 ай бұрын
Where can we find the rest of the videos for CS229 summer 2024?
@my_mother1682 ай бұрын
so good ,
@hajrawaheed963618 күн бұрын
Are the slides available online?
@Pl156045 ай бұрын
The training algorithm is actually the key... It is because of RLHF that we have GPT-4
@not_amanullah3 ай бұрын
thanks ❤️🤍
@AzharAli-n5c2 ай бұрын
great
@chrisj28414 ай бұрын
Anyone here took the class in which this lecture was held ( cs229 summer 2024) ?
@aminekhelifkhelif73063 ай бұрын
is there a way to add sections so we can return to specific parts later?
14 күн бұрын
can someone please share the complete series link.
@mudassiria3 ай бұрын
the lecture is good but the thing i dislike is the frequent change of the slide screen with the tutor camera. the video should be like a mini-player of tutor camera at the bottom corner with the slide screen on for the full time. that irritates me a lot in the whole lecture, making my focus fluctuate constantly
@sokhibtukhtaev9693Ай бұрын
what is that paper that mentions from last year at 1:27:25 which is 50x cheaper and better than human agreements?