Monarch Mixer: Making Foundation Models More Efficient - Dan Fu | Stanford MLSys #86

  Рет қаралды 4,206

Stanford MLSys Seminars

Stanford MLSys Seminars

Күн бұрын

Пікірлер: 4
@kvotheosem-sangue
@kvotheosem-sangue 6 ай бұрын
Explained so clearly! The paper gets you confused when gets into the math due to the material being so dense, thanks for extending to a video format
@jawadmansoor6064
@jawadmansoor6064 11 ай бұрын
axriv link please?
@backtofocused438
@backtofocused438 11 ай бұрын
Indeed! It is such a wonderful work and such a fantastic way to learn and I world have expected that for such a fantastic scientic exploration about this
@StanfordMLSysSeminars
@StanfordMLSysSeminars 11 ай бұрын
Added to the description!
Hardware-aware Algorithms for Sequence Modeling - Tri Dao | Stanford MLSys #87
1:19:06
Notes on AI Hardware - Benjamin Spector | Stanford MLSys #88
1:16:48
Stanford MLSys Seminars
Рет қаралды 5 М.
Visualizing transformers and attention | Talk for TNG Big Tech Day '24
57:45
Hardware-Aware Efficient Primitives for Machine Learning - Dan Fu
1:02:47
Johns Hopkins Whiting School of Engineering
Рет қаралды 245
The Next 100x - Gavin Uberti | Stanford MLSys #92
59:21
Stanford MLSys Seminars
Рет қаралды 6 М.
Foundation Models on Consumer Devices - Tianqi Chen | Stanford MLSys #85
47:35
Stanford MLSys Seminars
Рет қаралды 3,9 М.
Text2SQL: The Dream versus Reality - Laurel Orr | Stanford MLSys #89
57:05
Stanford MLSys Seminars
Рет қаралды 6 М.
EI Seminar - Danny Driess  - Have Large Models Changed Robotics?
1:03:12
MIT Embodied Intelligence
Рет қаралды 2,3 М.
Lecture 3 | Modern Physics: Quantum Mechanics (Stanford)
1:56:50
Serving 100s of LLMs on 1 GPU with LoRAX - Travis Addair | Stanford MLSys #84
59:17