NOTE: This StatQuest was brought to you, in part, by a generous donation from TRIPLE BAM!!! members: M. Scola, N. Thomson, X. Liu, J. Lombana, A. Doss, A. Takeh, J. Butt. Thank you!!!! Support StatQuest by buying my book The StatQuest Illustrated Guide to Machine Learning or a Study Guide or Merch!!! statquest.org/statquest-store/
@ShivamSaini-xt6rg4 жыл бұрын
What tools do you use to make your videos?
@statquest4 жыл бұрын
@@ShivamSaini-xt6rg I use keynote and final cut pro.
@ktburger6592 жыл бұрын
I’m watching this and tears are coming to my eyes. So many classes where I felt so dumb. But I just needed it explained a certain way. I can’t thank you enough for your videos, I’m going to share them with everyone I know doing stats
@statquest2 жыл бұрын
Thank you very much! :)
@appsoftomorrow2 жыл бұрын
I get it. So true!
@1947umw6 ай бұрын
Double BAM!!!
@datajunkie34274 жыл бұрын
I have just had a StatQuest Marathon today. You are one of my favourite teachers on KZbin for knowledge. Thank you sir!
@statquest4 жыл бұрын
Wow, thank you!
@socratic-programmer4 жыл бұрын
You are a truly gifted teacher. Thanks a lot for this video! I feel like statistics is that much more approachable thanks to this channel :)
@statquest4 жыл бұрын
Wow, thank you!
@skanvish4 ай бұрын
You are an amazing teacher. Here I am preparing for interviews many years after I left school,.. instead of referring to my notes from school , i am watching your videos. A big thank you to you !!
@marjiehoss14984 жыл бұрын
Dang I cant reject the awesomeness of these videos
@statquest4 жыл бұрын
BAM! :)
@saneeshcs66043 жыл бұрын
Last week my professor told me that we don't power to explain a result. I wondered the powerful one in the group says we don't have power. That powerlessness took me here. Thanks a lot for explaining power so clearly. She (professor) is powerful again, because she understood it. Thanks again.
@statquest3 жыл бұрын
bam!
@apoorvarawat2235 Жыл бұрын
I love the way you teach..... But honestly I love your opening! "There's clouds outside... But who cares.... It's time for Stat Quest... STATQUEST... "
@statquest Жыл бұрын
Ha! I'd forgotten about this tune. It's a good one. :)
@apoorvarawat2235 Жыл бұрын
@@statquest thank you so much for your reply.... U r too good to be true♥️
@katherineannnguyen Жыл бұрын
bro i could literally watch these videos for fun they're so good
@statquest Жыл бұрын
bam! :)
@harrymoore6140Ай бұрын
Showing the two distributions is very intuitive and really helped me visualise hypothesis testing. Thank you!
@statquestАй бұрын
Bam! :)
@tomp98574 жыл бұрын
Wow, this short video has explained to me what a 2 hour lecture failed to explain! Thankyou so much
@statquest4 жыл бұрын
Glad it was helpful!
@beigpodcast2 жыл бұрын
You explained the concept in a very simple, explicit, and fun way. Thank you.
@statquest2 жыл бұрын
Thank you!
@del79204 жыл бұрын
honestly this is the only stat video i was entertained haha and i actually really enjoyed the video and understood everything!
@statquest4 жыл бұрын
Bam!
@RaeOfSunshine314Ай бұрын
best description of power that i’ve ever seen !
@statquestАй бұрын
Thank you!
@arturleperoke32053 ай бұрын
Hi Josh! Please make a video on why caclulating post-hoc power is bad! Thank you!
@statquest3 ай бұрын
I'll keep that in mind.
@arimorrison78163 жыл бұрын
When the Null Hypothesis says "subscribe to my channel for more stat videos," my small p-value says "I will continue to watch your videos without subscribing!" MEDIUM BAM
@statquest3 жыл бұрын
Noted
@ShubhamSingh-ut3nh4 жыл бұрын
You are awesome in every awesome way possible The way you incorporate details of sample size in statistics is so great
@statquest4 жыл бұрын
Thank you so much 😀
@nielsthomsen2324 Жыл бұрын
🤡🤡
@parttimemusic46294 жыл бұрын
Omg ! I should have waited and take stats inference course this sem instead of last semester. This video is awesome ! I finally understand power now! Keep the hard work up Josh!
@statquest4 жыл бұрын
Hooray! Thanks!
@iqbahm3 жыл бұрын
Awsome video. No one else ever explained me so simply what "Power of a study" is.
@statquest3 жыл бұрын
BAM! :)
@karolineedrich86283 жыл бұрын
thank you so much for existing you are literally saving my life
@statquest3 жыл бұрын
Hooray! :)
@maggiehuang5566 Жыл бұрын
When you are driving in the rain, you can kinda see where you are going(how I felt about statistics before your video), the wind shield wiper is still necessary because it makes everything clearer (that's how your videos are to me). Confession: I was rolling my eyes when the cheesy BAM!!!s came out.
@statquest Жыл бұрын
bam! :)
@vanilla__latte3 жыл бұрын
This is the best stats channel on KZbin
@statquest3 жыл бұрын
Thank you! :)
@annawoodard64572 жыл бұрын
Thank you for your great videos!
@statquest2 жыл бұрын
Thank you so much for your support!!! :)
@user-vc6wo7cq8v4 ай бұрын
Your videos are the best I’ve seen. I’m working through a python for data science course…your explanations are fantastic and the animations make the concepts so easy to understand for applying with python. I can’t thank you enough for sharing!
@statquest4 ай бұрын
Wow, thanks!
@avam.2122 жыл бұрын
Oh wow, I didn’t expect the example problem to be the exact one I was looking for!!!
@statquest2 жыл бұрын
bam!
@Justice_King2 жыл бұрын
Very comprehensive explanation to get the insight even for beginners. At the same time, I also had fun. My heartfelt thanks to you Sir!
@statquest2 жыл бұрын
Thanks!
@gowthammurali12243 жыл бұрын
From this video i get to know that increase in power will decrease the type 1 error. May i right Mr.jos.. What a intutive video man...salute for your knowledge sharing....
@statquest3 жыл бұрын
Thanks!
@mostinho72 жыл бұрын
3:15, 7:00 for great summary (doesn’t miss anything from the video)
@statquest2 жыл бұрын
Yep!
@farsikogama6114 Жыл бұрын
Dude, I really want to purchase your book after watching some of your videos!! Great job in explaining
@statquest Жыл бұрын
Awesome, thank you!
@alecvan71434 жыл бұрын
Love the sound effects
@alecvan71434 жыл бұрын
Yet another topic I just figured I'd never get so simply and logically explained. Thank you, Josh.
@statquest4 жыл бұрын
Hooray!!! :)
@suvarnapunalekar47274 жыл бұрын
I never knew statistics can be so much fun!!! You are a star... thanks for doing this.. :)
@statquest4 жыл бұрын
Thanks so much! :)
@feidiqingfay4 жыл бұрын
"Shameless Self Promotion" ... hahahaha ... I can't stop laughing ... so cute ...
@statquest4 жыл бұрын
:)
@infinger20067 ай бұрын
I guess I'll have to watch the next video to see the difference between adding more samples to gat more power and the dreaded P-Hacking... on to the next video!! Thanks for the videos..
@statquest7 ай бұрын
bam! :)
@dipeshbansal13962 жыл бұрын
amazing...each lecture is a treat
@statquest2 жыл бұрын
Than you!
@zinnijha75563 жыл бұрын
Thank you !! For simplifying for the rest of us.
@statquest3 жыл бұрын
Thanks!
@giraldiego2 жыл бұрын
1:33 On this slide, It seems like the reason we correctly reject the Null hypothesis it is because the p-value is less than 0.05, but based on what I have learnt from your previous videos, I think it is because the value was actually very small (0.0004). Am I wrong? Cuz, what we only can say if it is below 0.05, it is that you can reject the Null Hypothesis and you will do it 95% of the time, but you still can be wrong rejecting it. Maybe the word could be, reject with a lot of confident?
@giraldiego2 жыл бұрын
Nevermind, I watched the rest of the video and now I understand better. It was just that at that point of the video I didn´t understand, without knowing what was coming next.
@statquest2 жыл бұрын
BAM! :)
@adriancruzat69943 жыл бұрын
I hate that I'm finding out about this channel so late. My test is tomorrow and watching your videos would've helped so much. Nonetheless, I'll be binging these videos all night haha
@statquest3 жыл бұрын
Good luck on your test! :)
@adriancruzat69943 жыл бұрын
@@statquest thank you!
@MiguelDimase2 жыл бұрын
I never saw an author answer every question or acknowledge every comment; it's remarkable (and I'm not saying you HAVE TO do it; it's a huge job. I think it takes more time than making the videos themselves! -which, by the way, are excellent-)
@statquest2 жыл бұрын
BAM! :)
@MrMe77-u4yАй бұрын
They should make a statue for you in each school to thank you for all the headaches saved to students!
@statquestАй бұрын
Ha! :)
@Quijanos13 жыл бұрын
Excellent explanation of Power; this was helpful. Thank you.
@statquest3 жыл бұрын
Glad it was helpful!
@Wagdimg122 жыл бұрын
Thanks!
@statquest2 жыл бұрын
Wow! Thank you so much for supporting StatQuest! BAM! :)
@yangwang68054 жыл бұрын
Finally understand what is power, thank you for your wonderful video!
@statquest4 жыл бұрын
Hooray! :)
@anna568873 жыл бұрын
The varieties of BAMs got me 😂😂😂😂😂 Thanks for this video . Really helped me understand the concept
@statquest3 жыл бұрын
Hooray! :)
@SemicolonExpected3 жыл бұрын
I fully expected to hear "AND SUBSTITUTE MY OWN" after you said "I REJECT YOUR HYPOTHESIS"
@statquest3 жыл бұрын
:)
@mohammedelhamamsy32753 жыл бұрын
Beautiful explanation, Thanks a lot! There's only one thing that I still find confusing that is: if the two distributions highly overlap with each other, what prevents us from thinking that both come from the same distribution? I mean we are looking at the weights of the exact same species (mice) why did we have a priori assumption that the weights of those on the special diet are different from those on a normal diet?
@statquest3 жыл бұрын
If we have no reason to think that the mice come from two distributions, then we would not spend the time and money testing the hypothesis to begin with. So, in this case, we must know something about the diet - maybe one is very unhealthy, and the other one is very healthy - and this causes us to suspect that they might be from different distributions, and this then justifies spending the time and money doing the experiment and testing the hypothesis.
@mohammedelhamamsy32753 жыл бұрын
@@statquest Got it, Thanks again ❤
@tina97532 жыл бұрын
♥ what a wonderful video! not even comparable to my dry epidemiology classes...
@statquest2 жыл бұрын
Wow, thank you!
@marcelsa51912 жыл бұрын
Thanks for the strong video! Cheers from Ox.
@statquest2 жыл бұрын
Thank you!
@RadicalVideos4 жыл бұрын
Very helpful and with comedic relief. Thank you so much
@statquest4 жыл бұрын
Bam! :)
@clairefontaa5874 жыл бұрын
Thank you for the great content again! Do you plan on making a video on Cohen's d, Cochrane's Q and all those meta-analysis merriments one day? :D (desperate PhD student asking)
@casualcasual12343 жыл бұрын
Thanks a lot and I would like to ask: at 4:23, if 2 distributions are the same then there is no need for power so no Power analysis. However, I think we do power analysis to find optimum sample size and then do tests to see whether special and normal diets have 2 different distributions or the same. So may I ask won't this be a contradiction?
@statquest3 жыл бұрын
We simply assume that we have two different distributions.
@casualcasual12343 жыл бұрын
@@statquest Oh thanks.
@noname-go2kt11 ай бұрын
Hi,your videos are great,and the opening sequences as well,thanks a lot My question is, what do I do if I want the power but at the same time don't know if my null hypothesis is true or not
@statquest11 ай бұрын
You never know about the null in advance. You just calculate power based on the assumptions that the two things are different and by so much. So, given those assumptions, you can calculate power. We then do the test and, if there is a difference, we should be able to detect it and reject the null.. If not, then we'll just fail to reject the null.
@noname-go2kt11 ай бұрын
@statquest I am sorry I don't understand what do you mean by the two things.For example at 4:25 you have said that the concept of power doesn't apply here since we know beforehand if our null hypothesis is correct or not. However what if I don't know,in short,is there any situation ever where I should not calculate power when doing hypothesis testing? Thanks a lot in advance
@statquest11 ай бұрын
@@noname-go2kt Yes, when we know that there is no difference, then Power does not apply. But we never know - otherwise we wouldn't bother doing the test to begin with. So we assume that there is a difference and carry on from there. In theory you should always do a power analysis if you have reason to believe you need to do a statistical test.
@aziausa4 жыл бұрын
I feel I am out of words that will fit in your appreciation. You are simply amazing !!!!! Thank you so much and keep these gems coming, please. Can you please explain what is Tukey HSD analysis and how do we perform that?
@statquest4 жыл бұрын
Thanks, and I'll keep that topic in mind.
@rimkenan46542 жыл бұрын
This is so helpful thank you so much! 🙏🏽✨ Greetings from Belgium 🇧🇪☺️
@statquest2 жыл бұрын
Thanks and greetings from Spain! (I'm in spain for the next week for work).
@edwinadrianta94554 жыл бұрын
Thank you so much for your amazing explanation. One of the best resources out there
@statquest4 жыл бұрын
Thank you! :)
@karducito223 жыл бұрын
Man you are awesome! I hope some day ! will teach like you
@statquest3 жыл бұрын
Thank you!
@muallagun67659 күн бұрын
thisss was very fun and enjoyable to watch, thank you !!!!! :))
@statquest8 күн бұрын
Thanks!
@jiangxu38954 жыл бұрын
Hello there, I have been following your tutorial recently. Great job but far lower sub. for the work you guys have done. Knowledge spread in a intuitive way is invaluable. Thumb up.
@statquest4 жыл бұрын
Thank you very much! :)
@stephennguyen80522 жыл бұрын
Hey Josh, thanks for the video! In the event that you truly have one distribution (4:17), what if you sampled data from the 2 tails and do hypothesis testing, isn't it possible to falsely reject the null hypothesis? Why is it that power doesn't apply in that scenario?
@statquest2 жыл бұрын
Yes, it is entirely possible to falsely reject the null hypothesis. This is called a "false positive" and it is controlled by the threshold of significance you set for the p-value. So you control false positives with the p-value. In contrast, you control false negatives with power.
@Happy.Traveller3 жыл бұрын
How do you calculate the P value of something that isn't due to chance? I watched your video on calculating P values, the example was on coins. Tossing coins is purely by chance if the coin was fair. Since food and drug are not fair, they are rigged, ie, they have a purposeful effect, how do you calculate P value? What is the value for each step? You "How to calculate p-values" video listed 3 steps. What would be the value of step 1 and 2? Would you say "What are the chances of the weight being specifically a value" (say, 80.19 grams) or "What are the chances of the weight being above or below a certain value"? Because if that is the case, it would be 50% since, when there is a clear difference between the 2, one entire group would be more than your set value, and the other will be less, as your graph demonstrates. Ie if 3 out of 6 are above a certain value (normal diet) and 3 out of 6 are under that value, it would be 3/6 which is 50%. Then since the value can be set at anything, if I set it super low or super high so it includes all or neither of the two groups, such as "chances of a mouse being less than 0 grams" or "more than 100kg" then you can say 0 out of 6. How do you calculate the p value then? As always: I hate statistics and statistics make no sense.
@statquest3 жыл бұрын
Again, there is almost always variation in the data we collect. Some of that variation is due to things were are interested in, some of that variation is due to things were are not interested in. p-values help us filter out the variation we are not interested in.
@pabloignaciomancilla16284 жыл бұрын
This is fun and truly enjoyable, keep doing it!
@statquest4 жыл бұрын
Thank you! :)
@michellenamuyaba55583 жыл бұрын
This is amazing! In just 8 minutes! thank you❤️
@statquest3 жыл бұрын
Glad you liked it!!
@varadgunjal2 жыл бұрын
Beautiful video! Any chance we can access the slides for quick revision @JoshStarmer ?
@statquest2 жыл бұрын
I have PDFs of some of my videos here: statquest.org/studyguides/ and have a book coming out soon.
@amritadayal19394 жыл бұрын
Hi... Me and my husband really likes your videos... Your explaining skills are great and things become simple to understand... Please upload some videos related to Natural Language Programming
@statquest4 жыл бұрын
Will try
@vahidnajafzadeh41373 жыл бұрын
dear Josh, do you have a video clip explaining what stat tests we should use for different types of data eg mean, median, portion, rate, etc? thanks
@statquest3 жыл бұрын
Not yet.
@vahidnajafzadeh41373 жыл бұрын
@@statquest BAM it 😉
@CandyLin0401 Жыл бұрын
Laugh upon hearing there's a shameless self promotion LOL Good job!
@statquest Жыл бұрын
Thank you! :)
@rkperohindirich6824 Жыл бұрын
Amazing content! MANY MANY THANKS ❤❤❤❤❤
@statquest Жыл бұрын
Most welcome 😊
@lizaminasyan92553 жыл бұрын
thank you so much for this fun video
@statquest3 жыл бұрын
Glad you enjoyed it!
@giorgiosperandio8708 Жыл бұрын
Thumb up for the intro
@statquest Жыл бұрын
BAM! :)
@chicagogirl9862 Жыл бұрын
I love the song in beginning of videos:)
@statquest Жыл бұрын
Hooray! :)
@natalieolofssonno253 жыл бұрын
How does this have to do with type I and II errors?
@statquest3 жыл бұрын
Type 1 errors are false positives, type 2 errors are false negatives. Power and power analyses are important for reducing the number of false negatives.
@natalieolofssonno253 жыл бұрын
@@statquest this helps thank you!!
@SoggyBagelz3 жыл бұрын
when you say "power is the probability that we will correctly reject the null hypothesis" - is the alternative of correctly rejecting the null hypothesis ONLY incorrectly rejecting the null hypothesis? or does it include incorrectly NOT rejecting the null hypothesis
@statquest3 жыл бұрын
Power assumes that the null is not true and we should reject it, so the only alternative from correctly rejecting it is to not reject it.
@dr.battulapradeep11833 жыл бұрын
The P value by seeing....
@statquest3 жыл бұрын
bam! :)
@MM-qk8eg3 жыл бұрын
based on this video, I assumed that independent samples t-test should have more power than paired-samples t-test. But apparently, that is incorrect: "When the same participants are used across conditions, the unsystematic variance (often called the error variance) is reduced dramatically, making it easier to detect any systematic variance". could you help me with this? Thanks!
@statquest3 жыл бұрын
If your samples are paired, then you should use a paired t-test (and it will have much more power than unpaired), this is because pair samples tend to have some correlation, and that information is helpful in understanding how different things are.
@ekenechikwelu37903 жыл бұрын
thank you so much stat quest, i am currently doing a master thesis on TOST and using Assurance in place of power to calculate sample size, my background is clinical medicine, have little knowledge on stat, but thanks to your video i am doing fine in stat. However pls, i have a request, can you make a video on the concept of Assurance, or refer me to resources to help me on this subject.. Thanks
@statquest3 жыл бұрын
I'll keep that in mind, but I can not promise anything soon.
@haykazmkrtchyan Жыл бұрын
Hi Josh, thank you for posting such great content. Question...how does a measurement measurement repeatability error (from Gage R&R study) impact the power of the test as apposed to bias or reproducibility error? i.e. does measurement repeatability error reduce the power of the test?
@statquest Жыл бұрын
I'm not familiar with measurement measurement repeatability error
@Kalmdownhema6 ай бұрын
ok so i am not sure if i'll get an answer here, but if we a low power, does that mean we are more likely to do p-hacking? In the last example we knew that both the observations came from different distributions, but had we not known that, would rejecting the null hypothesis based on a few p values be p hacking
@Kalmdownhema6 ай бұрын
Ah nvm after going through a few of the comments apparently this gets answered in the next video.
@statquest6 ай бұрын
:)
@powersteh28933 жыл бұрын
Is the example here a "two tailed test"? or is this something totally different?
@statquest3 жыл бұрын
I pretty much always use two-tailed tests.
@benwilde17684 жыл бұрын
Will you do a series on multilevel models (aka linear mixed models or hierarchical models)?
@statquest4 жыл бұрын
It's on the to-do list.
@TheVideosSalo4 жыл бұрын
Most fun statistics i've had!! BAMMM
@statquest4 жыл бұрын
BAM! :)
@neuroinformaticafbf5313 Жыл бұрын
Quick question: knowing that we have two different distributions, and repeating the test until we have a small p-value, isn't some kind of p-hacking?
@statquest Жыл бұрын
What time point, minutes and seconds, are you asking about?
@neuroinformaticafbf5313 Жыл бұрын
@@statquest 5:39. I mean, even though you have two "different" distributions, if you run the experiment several times and you have almost always a p-value above the average, shouldn't you assume that the two distributions have no statistical differences?
@statquest Жыл бұрын
@@neuroinformaticafbf5313 The goal here is to illustrate the concept of power. How, when we have low power, only a small percentage of tests will correctly reject the null hypothesis when it is true. When we have a more power, then a larger percentage of tests will correctly reject the null hypothesis when it is true. Also, to be clear, p-hacking refers to a practice that results in incorrectly rejecting the null hypothesis, when the null is actually true. So it doesn't really apply in this context, where the null hypothesis is not true.
@karthica5251 Жыл бұрын
Out of curiosity, at 2.13 even though we are knowingly calculating the p-values from samples from 2 distributions, do we still apply the BH method (FDR) discussed in the previous stat quest? When do we use FDR?
@statquest Жыл бұрын
When you know that you have two distributions to begin with, there's no point in even calculating the p-value to begin with. In other words, this is just an example. That being said, in practice, we never know, and if we do multiple tests, then we should correct for that with FDR or some other method.
@muskanhassanandani1816 Жыл бұрын
By adding measurements, we increase power But if we are unsure if the measurements are from the same or different distribution, Won't that be considered as p-hacking?
@statquest Жыл бұрын
No, we don't have to be sure that they are from a different distribution, we just assume that they are and we assume that the difference is some value and the variation is some other value. Then we then find the sample size that would give us confidence that, if those assumptions are reasonable, we will reject the null hypothesis.
@PhiNguyen-wm4kq4 жыл бұрын
So a low Statistical Power of a p0.05 tell that the result is not reliable too? Thank you.
@statquest4 жыл бұрын
Low statistical power means that there is a low probability that you will correctly reject the null hypothesis (if it is true).
@sayuriyamagata68534 жыл бұрын
@@statquest Is it better to use a test with lower statistical power to test the positive effect of something that could be too dangerous if it wasn't that much effective? like a drug that may improve a health condition but has very harmful side effects...
@JavierSegoviaHernaez-mn8uy Жыл бұрын
So goood. Muchas gracias desde España !!
@statquest Жыл бұрын
De nada! :)
@michaelnguyen70814 жыл бұрын
Hi Josh, can you make a video about heteroscedasticity?
@statquest4 жыл бұрын
I'll keep that in mind.
@michaelnguyen70814 жыл бұрын
@@statquest thank you!!!
@pradeepkumar-ew1ze4 жыл бұрын
Going by these videos and your Linear Regression videos, I wonder how many mice you got as Pets :)
@statquest4 жыл бұрын
I used to work in a laboratory that studied mouse genetics.
@moart874 жыл бұрын
How to determine that ‘same distribution’? I’ve always struggled with this concept in the context of A/B testing. Is the baseline distribution the treatment sample, the control sample, or the combination of both?
@statquest4 жыл бұрын
Usually it is the control sample.
@moart874 жыл бұрын
StatQuest with Josh Starmer thanks for replying! I work in marketing and use a 10% control sample (to reduce opportunity costs). Should I use the treatment sample as a baseline in that case?
@statquest4 жыл бұрын
@@moart87 It doesn't matter because either way you are trying to determine if one is different from the other.
@dhritimandas19683 жыл бұрын
How do we interpret if we do no see statistical significance even after using 9 samples ?
@statquest3 жыл бұрын
Small effect size or lots of variation in the distributions. Either way, it's time for a power calculation.
@sukieyakie4 жыл бұрын
could you help me with this? i am assigned an experiment with growing of mung beans in seasalt vs sodium chloride (table salt) and my null hypothesis for the experiment is that there is no difference in growth whether it is grown in seasalt or nacl. my alternate hypothesis is that there is a difference. however, before i start the experiment i need to find out the number of beans to use for each test i.e n=? and to find out the optimum sample size to use, my teacher asked me what is the statistical power for this experiment? please help ive been stuck on this for days and cant start my experiment because i still cant justify the amount of beans i should use to test on.
@statquest4 жыл бұрын
Umm... Just follow the steps in this video to calculate the sample size.
@Gengar992 жыл бұрын
You're an angel.
@statquest2 жыл бұрын
Thanks!
@sridharbabu9287 Жыл бұрын
can you please make a vedio on statistical significance and relation with p value
@statquest Жыл бұрын
I've already got one: kzbin.info/www/bejne/rJbQi6d7gptmfbs and kzbin.info/www/bejne/ZqDGZWx6rqZmnrc
@luisrodrigueziii73162 жыл бұрын
YOU ARE THE GREATEST
@statquest2 жыл бұрын
Thank you! :)
@JavierBFV3 жыл бұрын
Wait wait, how can I calculate te P-value of the mean of examples of two different distributions? I watched the videos of P-value and didn't understand the how.
@statquest3 жыл бұрын
You can do this with a t-test. I explain t-tests in a non-standard way, so you have to see two videos: kzbin.info/www/bejne/pJyVdIR_idKSm9E and kzbin.info/www/bejne/hHeYkJWqhMZ2n8k
@hydrobell3 жыл бұрын
@@statquest I had trouble following this too, it is kind of glossed over. Thanks for the clarification.
@haneulkim49023 жыл бұрын
Thanks for an amazing video! One question, if I want to prove that data selected from two different group actually comes from the same distribution(opposite of your example) than do I need to set new null hypothesis("data come from different distribution") or does not rejecting null hypothesis multiple times prove that datas come from same distribution?
@statquest3 жыл бұрын
Unfortunately you can't turn the hypothesis around. For details, see: kzbin.info/www/bejne/ZqDGZWx6rqZmnrc
@timmel874 жыл бұрын
Just one quick question for my last BAM today: Did I understand correctly that the p-value is the probability for a Type I error and (1 - Power) the probability for a Type II error? Thanks a thousand and good night from Berlin!
@statquest4 жыл бұрын
A "Type I" error is a false positive, and a p-value is the probability of getting a false positive (incorrectly rejecting the null hypothesis when it is true). A "Type II" error is the probability of getting a false negative (incorrectly failing to reject the null hypothesis when it is false). Does that make sense?
@constantinp648810 ай бұрын
@statquest man, you should create courses for Data Camp since they pretty much suck in explaining difficult statistical things :)