It's the factor you have to introduce when switching to spherical coordinates. Technically it should be ro^2*sin phi dro*dphi*dtheta, but since ro=1 in this case, he was able to omit it. Whenever you switch from one kind of coordinate system, such as from rectangular to polar, or cylindrical, or spherical, or your own made up system, you need to introduce multipliers. Sometimes they're just constants, but sometimes they also involve variables or functions.
@stefanossalas33337 ай бұрын
That’s wrong
@stefanossalas33337 ай бұрын
Stop spreading misinformation
@stefanossalas33337 ай бұрын
It is “total nonsense”
@aldenrj7 ай бұрын
Odeeeee
@mmmeliih13 жыл бұрын
I really love the scene when the guy went and then came back :D
@MrMathExpert10 жыл бұрын
apparently, it takes 10 sec or less for students at MIT to solve the problem at 2:00.
@Corvanor7 жыл бұрын
Lmao
@rodrigosimoes1857 жыл бұрын
its quite simple
@Falcon461012 жыл бұрын
I love how this guy does intergration and the cross product like its simple arithmetic
@SP-qi8ur4 жыл бұрын
How is your life after 7 years
@RKatz12110 жыл бұрын
im pretty sure you are allowed to change the surface when you are using stokes theorem as long as you keep the same boundary. if you had changed it to a disc at the base of the surface, the normal becomes and the integral is just the area of the unit disc which is pi(1)^2 which is equals to pi
@tomctutor7 жыл бұрын
he's not working out a area, there's a vector field there? and pi/2 =/= pi
@arnurmakenov43507 жыл бұрын
by Stokes' theorem you can take any other (as long as requirements for the theorem are met) surface which has the same boundary as the original one. When taking that "another" surface as a unit disk centered at (0,0,0), the surface integral happens to be the area of that disk. pi * radius^2 = pi
@marcusrosales33446 жыл бұрын
@@tomctutor Yes, but after taking the dot product, you get 1, so all that is left is the integral and dS. This is the area. You also miss read their response on the last part... He put pi; the 2 is an exponent.
@zino-kader5 жыл бұрын
This is correct and it's how I prefer to solve these since it involves less complicated parametrizations so the risk of screwing up isn't as high
@yaymynameispete13 жыл бұрын
@MrVandeju We have that z=0 and dz=0. So, in his calculation, he does 2z*dx + x*dy + y*dz. Thus we are left with x*dy.
@robertcummings39359 жыл бұрын
Uh uh, he be skipping steps, I'm not advanced enough for those. Where PatrickJMT at lol
@sfdko32917 жыл бұрын
facts
@xoppa097 жыл бұрын
What step did he skip? I would be happy to fill in the details, if you have a specific question.
@Boimeirelles7 жыл бұрын
when he does curl F he doesnt show how he did it haha and that is hard lol
@thechuggs89974 жыл бұрын
spring1 could you explain the limits for fi? I don’t get why is it in between 0 and pi/2
@Danni40964 жыл бұрын
Ian Tan we want to calculate upper half of sphere, so z>0. When he parametrized z=rcos(fi) you can ask your self: for which values cos is greater then 0? When fi goes from 0 to pi/2.
@gummybear92cjc8 жыл бұрын
4:51 "You have to remember way back to 1801" Yep yep, it definitely feels like it's been 215 years since single variable calc. Haha
@LiamPattersonPlus8 жыл бұрын
when he actually means MIT course 18.01 LOL
@Shyzah6 жыл бұрын
Liam Patterson pretty sure he was joking
@NedStarkZA3 жыл бұрын
5:51 "So that was the Line Integral, very straightforward thing!".... I laughed so hard!
@sinisasladojevic64198 жыл бұрын
briliant insructor
@MrGiratina9999 жыл бұрын
why parameterise at 11:40?? at that point, he has ∫∫z dS BUT that = ∫∫z dA/ n.k = ∫∫z dA/z because n.k = z, so ∫∫z dA and then go ∫∫ r dr dtheta and that gives the answer in 2 more lines.
@Pomme8438 жыл бұрын
+MrGiratina999 What's n.k?
@MrGiratina9998 жыл бұрын
n.k = normal vector dotted with the unit vector in the k or z direction.
@sanjaykrish87198 жыл бұрын
love his voice..
@willdoesmusic84023 жыл бұрын
I've been confused with Stokes' Theorem for the past few days, and you just made it clear to me. Thank you!
@aangthejeweller8 жыл бұрын
Who's man is this? He is fantastic! Thank you sir, for blessing me with your knowledge.
@biplabghosh42197 жыл бұрын
if z=o then fig would be 2 dimensional and limit willl be 0-π/2 and 0-2π results whole circle.
@stumbling6 жыл бұрын
13:26 "Let me just check I'm not doing anything silly..." *fades to black*
@068LAICEPS4 жыл бұрын
So if we have had a complete sphere there would not be a line integral to do because we would have need to be equal to zero? And it doesn't matter the height of the upper part of the surface because we the same contour we will need to obtain the same line integral and the same result?
@hourtbora30729 жыл бұрын
what don't you use x=rcost and y=rsint? i like your style of showing this section. it's so cool--fast and clear.
@zuzusuperfly83639 жыл бұрын
Hourt Bora He did.
@Mumfin9 жыл бұрын
Hourt Bora r is 1.
@hourtbora30729 жыл бұрын
ok i see. thanks guys!
@yonatanable13 жыл бұрын
Oh. God this theorem is so interesting, verifying stoke theorem gives some basic ideas that what Stokes Theorem is all about.
@ElTurbandito6 жыл бұрын
@4:57 why does F*dr = xdy, there is no explanation
@tsshamoo23766 жыл бұрын
Sorry if I'm too late but since the path is entirely contained within the xy plane, z=0. This also means dz=0 since the derivative of 0 is still 0. So F= and dr=. F•dr=0*dx+x*dy+y*0=xdy Hope that helps and again, sorry if im too late to help you for your final or something like that
@christineclement84976 жыл бұрын
Tssha MoO2 k
@lugia8888 Жыл бұрын
There is explanation you just don’t pay attention.
@lugia8888 Жыл бұрын
@@tsshamoo2376 dont be sorry tsshamoo its explained in the video. these people should know better - instead of paying attention they just want the answer spoon fed to them. tik tok brain
@riccardofasano10402 жыл бұрын
@8:18 i see how you get your normal vector by using special simmetries of the sphere, but I was looking for a more general way to find a normal vector for a surface. In my mind n is something orthogonal to the tangent space, so i should probably do the computations to find a vector which gives 0 when multiplied for a vector tangent to the surface. Nonetheless i find this process a bit difficult in higher dimensions, because i can't visualize a tangent vector fast enough. Anyway, very nice video :))))
@ashutoshpal31457 жыл бұрын
at 13:20 , would there be limit of z from -pi/2 to pi/2
@juanholguin87839 жыл бұрын
eurekkkkaaaaa!!!!!!!!! I have found a video with no racist comments conspiracy theories, blames jews for everything, atheist comments, et., calculus, you have gain a new friend for eternity.
@davidjohnson-my6sr7 жыл бұрын
Is he missing another surface? namely, the surface at the bottom of the hemisphere, which is the circle on the xy plane. we would have to compute the surface integral of this too right (of course, this will equal to zero)?
@tsshamoo23766 жыл бұрын
Sorry if Im too late with this reply, but no, the bottom would not equal 0. If you do it correctly, it should be -π since now the divergence theorem applies and the div(curl(F))=0. For the Kelvin-Stokes theorem, the surface doesnt have to be closed. It just has to be a piecewise-smooth surface that fills the region made by the curve
@musazephania91946 жыл бұрын
Very nice explanation about the verification of stoke theorem
@davidjohnson-my6sr7 жыл бұрын
does anyone know why dS was equal to that? surely we dont multiply by the jacobian since were not transforming the region of integration... simply just parametrizing..
@keithdow83274 жыл бұрын
He made the F dot dr integral too difficult. The integral from 0 to 2 pi is the same for cosine squared and sin squared. add in sin squared and then divide by two. cos squared plus sin squared = one. THe integral from 0 to 2 pi divided by two is pi.
@mathstoinfinityclassinTamizhla5 жыл бұрын
I couldnot understand 13.26 how do you got the ds value ???can anyone help
@obsidiantechz13714 жыл бұрын
how to verify for not unit sphere
@albertmendoza83305 жыл бұрын
This guy is awesome!
@snadbad12 жыл бұрын
Equals Sign: 10/10 would watch again
@FarazJananKhattak12 жыл бұрын
Most of us on the youtube do are not from the class, if you could go a bit in the background that would be great; instead of testing it right away
@alexwilson80343 жыл бұрын
Why is MIT uploading 360p videos...
@abeimnida Жыл бұрын
How are we left with x dy? I dont get it whatt?
@lugia8888 Жыл бұрын
He explains it. You can replay the video multiple times too it’s not hard to miss. Pay attention.
@MegumiTheGreat Жыл бұрын
I'm sitting here watching cat videos all of a sudden KZbin's like you know what here calculus.
@XweienX8 жыл бұрын
Just a heads up, this is not for calculus beginners. You'd be lost when he advances without writing down steps.
@MazwiKhoza11 жыл бұрын
why is dS equals to that? anyone knows?
@mithunmahato3097 жыл бұрын
Mfanafuthi Khoza this is the same confusion I face...
@davidjohnson-my6sr7 жыл бұрын
Mfanafuthi Khoza does anyone know the answer to this? i thought d (boldface S) = n dS = n * |N| * dphi dtheta ?!?!
@bilalakram35214 жыл бұрын
Where did come ds from?
@iamthesak12 жыл бұрын
God damn I LOVE THIS GUY I WANT TO TAKE ALL HIS CLASSES.
@dustinengel23159 жыл бұрын
when he went to spherical coordinates, he made the jacobian sin(phi) only. is this because even though the jacobian should be rho^2 sin(phi), rho is 1 and 1^2 is 1 so he just left it off?
@aleespazx8 жыл бұрын
yep
@codyfan40707 жыл бұрын
It's a unit sphere so ro is just 1
@BambiChub9 жыл бұрын
Can someone be kind enough to explain to me why, upon parametrization, x=cos θsin φ etc.?
@AvenueFifth9 жыл бұрын
Assata Amaechi Osborne Those are the basic spherical coordinates. Check wikipedia about it
@MaxG6289 жыл бұрын
+Assata Amaechi Osborne For a given φ, you can think of sin φ = r, where r is the radius of the horizontal circular cross section of the sphere, at height z = cos φ. Now the parameterizations of x and y are exactly the same as for the line integral.
@sshannon19486 жыл бұрын
is dS interchangeable with dA?
@massexploder12 жыл бұрын
I love this guy!
@KumarHemjeet7 жыл бұрын
why is z zero ?
@Stayawayfrommyname7 жыл бұрын
the circle is on the z=0 plane
@xoppa097 жыл бұрын
Excellent teacher. Please make complex analysis videos.
@orhanaziz54778 жыл бұрын
You deserve subscription.
@FarazJananKhattak12 жыл бұрын
Love you guys!! Thanks
@adrianamishell53093 жыл бұрын
the best teacher!
@emir25914 жыл бұрын
yo isn’t ds rho^2 sin(phi) not sin(phi)?!!!???!!?!!??!!?!??!!?!?!?
@lugia8888 Жыл бұрын
rho is 1 stupid
@yaohuadong12715 жыл бұрын
Thank you very much :)
@57kikky13 жыл бұрын
thank you
@aamirgeelani18144 жыл бұрын
I watched this at 2X playback speed. :-D
@banana1447 жыл бұрын
curl(F) is wrong, it should be not ; although you get the same result anyway
@Stayawayfrommyname7 жыл бұрын
nope, it's correct
@banana1447 жыл бұрын
wow, i was wrong! Thank you very much (:
@annanyatyagip5 жыл бұрын
thanks!!
@sandun00112 жыл бұрын
Thank you sir, you made my life easier !
@rahulgouni96868 жыл бұрын
very nice!
@dracodiemnuntiat10 жыл бұрын
He forgot to mention the radius when parametrizing, if the radius was 2 this process would be slightly wrong.
@Tschaegger7910 жыл бұрын
No, because it's the unit sphere, so radius is 1. So you can ignore it in this case.
@dracodiemnuntiat10 жыл бұрын
Tschaegger79 In this case, but it would be better to have an all encompassing explanation than to just ignore it.
@bugsbunny2786 жыл бұрын
That is what I was wondering
@6thHorseMan11 жыл бұрын
My three year old son informed it is actually a train track.
@alokchaudhari2813 жыл бұрын
very helpful keep the good work up
@aslamkmns9113 жыл бұрын
4 hours lecture = 17 minutes video. =='
@paulg4446 жыл бұрын
great video but he rushed through the dot product way too fast.
@lugia8888 Жыл бұрын
Its dot product… you want him to help you how to add too? Dumb criticism
@vd85313 жыл бұрын
14:00 nice equal sign lol
@deadcoww12 жыл бұрын
You're suppose to know that already..
@PikelsMH39 жыл бұрын
Thanks man.
@mathematicsbyahsanmohsan88498 жыл бұрын
sir how i can download this lecture
@jlsmatejuanluisramirez6 жыл бұрын
I love your explanations!!!
@Algebrainiac2 жыл бұрын
This whole time I thought it was “strokes’ theorem” and not “stokes’ theorem” 🤦🏻♂️🤦🏻♂️🤦🏻♂️ Also… my brain 💀💀💀💀
@vblackkpr12 жыл бұрын
That is the most Awkward Silence of ALL TIME 2:00 XDDDDDDD Nice Explanation !! Loved it
@Cody_Pulliam8 жыл бұрын
quit watching once he left out the rho's in parametrization
@sasquatchjim31988 жыл бұрын
+Cody Pulliam Hey genius, he was integrating over the unit sphere where rho would be one. Also when using Stoke's theorem, at least in Calc 3, you can only use up to two substitution variables.
@HT-rq5pi8 жыл бұрын
+Cody Pulliam fail.
@jackbryant60878 жыл бұрын
Well maybe if you actually gave it 2 seconds of thought you'd understand why he "left out the rho's".... Good luck in your finals.....
@carleto-y8q10 ай бұрын
M-I-T-K-E-Y M-O-U-S-E
@sarahromero80907 жыл бұрын
mind blown
@UchihaKat12 жыл бұрын
Isn't it? ;-P
@poperman188 жыл бұрын
he computed the curl wrong, its , not
@kimcheelegacy10 жыл бұрын
oh my, thank you so much. This is well explained and helped me study better for my upcoming exam.
@Rayquesto8 жыл бұрын
7:26 Just write out the determinant man!!!
@drewpierpont33616 жыл бұрын
Well, thanks for helping, and also thanks for reminding me I am UT-Dallas material and not MIT.
@maheshtom90037 жыл бұрын
sounds like the joker
@carleto-y8q10 ай бұрын
Horse shit, a length is not equal to a surface area. Why do you omit the units of the integrals?