Very well done. Density is on trend everywhere now!
@DrEbrahimian Жыл бұрын
Interesting! I wonder why that is!
@derkritiker94348 ай бұрын
I think in 9:30 the ineaquality should be a
@DrEbrahimian8 ай бұрын
True! Thanks for catching that!
@acrommclain5233 Жыл бұрын
I have a question about a slight generalization. Let $A = \{(2^{n}3^{m},5^{n}7^{m}):\space n,m\in\mathbb{Z}\}\subset\mathbb{R}^{2}$ What is $D(A)$ (the set of the accumulation points of A)? Is A dense in $\mathbb{R}^{2}? What if $A = \{(2^{n}3^{m},5^{n}7^{m}):\space n,m\in\mathbb{Z}\spacen\leq0\leqm\}\subset\mathbb{R}^{2}$?
@DrEbrahimian Жыл бұрын
This is a very interesting quetsion. I will give it some thought.
@acrommclain5233 Жыл бұрын
@@DrEbrahimian For the big set the answer is not to difficult. I will not spoil it though if you want to come up with it. For the n
@ilemt0923 Жыл бұрын
I'm interested in this. Could you provide some references or materials about this topic?
@DrEbrahimian Жыл бұрын
The proof is presented in the video. Which topic interests you, especially?
@MathEnthusiast-od8yu Жыл бұрын
great video. Love it
@adfr1806 Жыл бұрын
I dont understand what happens at 10:40, you just showed the infimum belongs to G not that there is an elements smaller than epsilon... what am I missing
@DrEbrahimian Жыл бұрын
That turns the problem into the previous case where there is the smallest positive element in G.
@jiaweihuo69515 ай бұрын
Does it mean that for any different numbers $a$ and $b$ of $\mathbb{R}$, then the additive group of $a,b$ is dense in $\mathhb R$?
@DrEbrahimian5 ай бұрын
Good question. Not necessarily. For example the additive group generated by any two rationals is cyclic, and hence not dense.
@jiaweihuo69515 ай бұрын
@@DrEbrahimian Thank you! I have another question. Is the additive group generated by two differential irrational (for example, $sqrt 2$ and $\sqrt 3$) dense in $\mathbb R$?
@DrEbrahimian5 ай бұрын
Not necessarily. This is only true if the two numbers are linearly independent over Q. For example the additive group generated by 2sqrt(2) and 3sqrt(2) is cyclic.