sum versus product battle!!

  Рет қаралды 14,832

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 48
@emanuellandeholm5657
@emanuellandeholm5657 4 жыл бұрын
Relationships between sums and products are really interesting. Thanks for this video professor Penn!
@vilkillian
@vilkillian 4 жыл бұрын
yo. Formula on the thumbnail is wrong. As i saw that i thought that tan(m*pi) where m belongs to Z is always zero, so product and sum is 0. nothing to compare But in video you have 1/(2n+1) inside tan argument, not outside like in the thumbnail
@adityamohan7366
@adityamohan7366 4 жыл бұрын
Funny how the product is less than the sum for n > 1. The sum is exactly (Product) x (Product - 1) /2
@rajballabhyadav5089
@rajballabhyadav5089 4 жыл бұрын
An alternate way could be to use the relation tan(a+b+c+d.......)=(s1-s3+s5-s7+......)/(1-s2+s4-s6+.....), you can find the formula on web and get to know what the s's are. According to question we will set a b c d..... (there are 2n+1 letters in the argument of tan) equal to mπ/2n+1 and hence the above equation gives 0 on LHS and implies that the numereator be 0 , this gives a polynomial in tan^2(mπ/2n+1) after which the results could be derived. It may look lengthy(just because I have written a lot of things) but I found it easier and calcultion(further steps) are super short using vieta's relations. NOTE: the polynomial should be considered for two different cases i.e. when n is odd and when it's even, it wont' change the results but will only change the signs of coefficients in the polynomial. Also the thumbnail expressions are misleading.
@AnshPr2311
@AnshPr2311 3 жыл бұрын
More easier is: (mπ)=[(2n+1)∅] now take tan on both sides.. Numerator of expansion of RHS =0 now you'll get the polynomial of increasing odd powers of tan,but it'll give us the roots tan(mπ/2n+1) but we need tan^2 hence we can use transformation of roots then we'll use vieta's 🙏🏻
@dcterr1
@dcterr1 3 жыл бұрын
Wow, impressive calculations!
@blackflan
@blackflan 3 жыл бұрын
So interesting how the product of the tangents is equal to the mean of them (the sum divided by n). Is there some connection to some probability distribution?
@Mephisto707
@Mephisto707 3 жыл бұрын
Imagine having to figure all this out in a test!
@JirenSlr
@JirenSlr 2 жыл бұрын
I actually got these exact sum and product to work out in a test on my first year of a college
@kucckumelon2837
@kucckumelon2837 Жыл бұрын
​@@JirenSlrwhich class was this asked in?
@JirenSlr
@JirenSlr Жыл бұрын
@@kucckumelon2837 I believe it was analysis
@morelelfrancel6603
@morelelfrancel6603 4 жыл бұрын
This is beautiful.
@gabrieltellesm
@gabrieltellesm 3 жыл бұрын
Amazing!
@francoismichelon2848
@francoismichelon2848 4 жыл бұрын
Maybe you should be a bit more careful when you divide by cos(m*pi/(2n+1)) and check when it is equal to 0
@michaelempeigne3519
@michaelempeigne3519 4 жыл бұрын
integrate [ (e^x ) * ( cos x ) * ( ln x ) dx ]
@housamkak646
@housamkak646 4 жыл бұрын
insaneeeeee loveed itt
@chopinmin
@chopinmin 4 жыл бұрын
Great video! Just a quick comment that the expressions in the thumbnail are not quite right...!
@thephysicistcuber175
@thephysicistcuber175 4 жыл бұрын
Unforseen solution. This is so cool.
@VishnuSrivatsava
@VishnuSrivatsava 4 жыл бұрын
Hey you're into math too? Nice! No more uploads?
@thayanithirk1784
@thayanithirk1784 4 жыл бұрын
Please do some geometry problems and also try IIT JEE ADVANCE questions they are really cool
@kamalnehra4295
@kamalnehra4295 4 жыл бұрын
Jee advanced questions are cool but not much intuitive . There is a lot of calculation and less thinking
@V-for-Vendetta01
@V-for-Vendetta01 4 жыл бұрын
@@kamalnehra4295 what are you smoking?
@kizyzo1348
@kizyzo1348 4 жыл бұрын
@@kamalnehra4295 have you ever actually tried a that paper for yourself atleast once?
@gmchess7367
@gmchess7367 3 жыл бұрын
Mind blowing question 👍👍
@karimjemel7405
@karimjemel7405 2 жыл бұрын
How can you divide inside the sum when the term you're dividing with is non constant (in terms of k)?
@movax20h
@movax20h 2 жыл бұрын
Vieta's formula in disguise.
@michuosas
@michuosas 4 жыл бұрын
hope I will someday get to work this way.
@warmpianist
@warmpianist 4 жыл бұрын
I have some sort of weird question out of my mind. What are all possible real functions f such that sum f(m) from m=1 to n is equal to product f(m) from m=1 to n, for all n?
@demenion3521
@demenion3521 4 жыл бұрын
you can transform the equality to ln(sum(f(m)))=sum(ln(f(m))). for n=2, there is a family of solutions, but I think for n>2, you quickly run into problems because of the concavity of the logarithm.
@odenpetersen6028
@odenpetersen6028 4 жыл бұрын
"Elementary techniques"
@electroskylightgaming4085
@electroskylightgaming4085 4 жыл бұрын
Shut up
@santiagoarce5672
@santiagoarce5672 4 жыл бұрын
What part would you consider non-elementary? I think maybe the only thing not taught in high school is the pi sign but that is pretty easy to understand.
@JoaoVictor-gy3bk
@JoaoVictor-gy3bk 4 жыл бұрын
They're elementary, they're just being used in a more "complicated" way, but are elementary nonetheless
@goodplacetostop2973
@goodplacetostop2973 4 жыл бұрын
17:31
@santiagoarce5672
@santiagoarce5672 4 жыл бұрын
Who are you?
@nasim09021975
@nasim09021975 4 жыл бұрын
I see these videos sometimes have glimpses of Deja Vu (repetition of sentences) 😄
@tianyouli9762
@tianyouli9762 4 жыл бұрын
thanks!
@angelgabrielramirez9494
@angelgabrielramirez9494 4 жыл бұрын
My man over here killing my self esteem
@bartolhrg7609
@bartolhrg7609 2 жыл бұрын
Just another proof that mathematicians choose a few formulas Mix them up A expect you to guess them during the test
@kqp1998gyy
@kqp1998gyy 4 жыл бұрын
AweSome!🌷
@williamadams137
@williamadams137 4 жыл бұрын
7:34 and that’s all equal to zz...
@famoxyzfamoxyz7027
@famoxyzfamoxyz7027 3 жыл бұрын
1:05 i m pi. that's irrational of michael to say.
@elhassananhichem2677
@elhassananhichem2677 4 жыл бұрын
Think for alle .please i need your wathsup proof .
@zygoloid
@zygoloid 4 жыл бұрын
Early on, you rewote e^imπ as (e^imπ/x)^x. I would have liked to see more justification of this step, since it's not correct in general. For example, if x = ½ and m = 1, then the LHS is -1 but the RHS is 1^½ = ±1. I think it probably is correct when x is an integer (as is the case here), but it would have been useful to me if you'd talked through that subtlety a little.
@otakurocklee
@otakurocklee 4 жыл бұрын
good point!
@otaibabahar7521
@otaibabahar7521 4 жыл бұрын
Zeta (i) =?
@nevokrien95
@nevokrien95 4 жыл бұрын
The thumbnail is missleading
@FisicoNuclearCuantico
@FisicoNuclearCuantico 4 жыл бұрын
:P I work for the U.S. govt. I've got to stay lowkey.
an infinite tangent product.
23:20
Michael Penn
Рет қаралды 18 М.
A nice inverse tangent integral.
19:23
Michael Penn
Рет қаралды 18 М.
Увеличили моцареллу для @Lorenzo.bagnati
00:48
Кушать Хочу
Рет қаралды 7 МЛН
Family Love #funny #sigma
00:16
CRAZY GREAPA
Рет қаралды 59 МЛН
МЕНЯ УКУСИЛ ПАУК #shorts
00:23
Паша Осадчий
Рет қаралды 4,2 МЛН
Two sum identities.
18:39
Michael Penn
Рет қаралды 24 М.
A sum two ways!
31:19
Michael Penn
Рет қаралды 32 М.
An interesting approach to the Basel problem!
19:26
Michael Penn
Рет қаралды 138 М.
Two nice double sums!
14:06
Michael Penn
Рет қаралды 22 М.
So many factorials!!!
28:47
Michael Penn
Рет қаралды 47 М.
Factoring Quadratics WITHOUT Guessing Product & Sum
20:01
JensenMath
Рет қаралды 90 М.
You, Me and The Legend of Question 6
19:27
blackpenredpen
Рет қаралды 324 М.
A Wallis type infinite product.
28:32
Michael Penn
Рет қаралды 17 М.
another Riemann-Zeta function identity.
28:31
Michael Penn
Рет қаралды 18 М.
A nice integral that uses the Wallis product.
16:55
Michael Penn
Рет қаралды 27 М.