Supercharge Your RAG with Contextualized Late Interactions

  Рет қаралды 14,221

Prompt Engineering

Prompt Engineering

Күн бұрын

Пікірлер: 48
@engineerprompt
@engineerprompt 9 ай бұрын
If you are interested in leanring more about Advanced RAG Course, signup here: tally.so/r/3y9bb0
@qwertyntarantino1937
@qwertyntarantino1937 9 ай бұрын
that's definitely a hot topic
@JosephCardwell
@JosephCardwell 9 ай бұрын
by 51 seconds we have the most direct explanation of embedding on youtube.
@hl236
@hl236 8 ай бұрын
Thanks for this. There is a lot of obsession over LLMs but I RAG has huge room for innovation that will multiply the performance of ai applications.
@engineerprompt
@engineerprompt 8 ай бұрын
I agree, I am personally really interested in RAG and see that as the main application that will assist people in their workflows before we see anything else
@maxlgemeinderat9202
@maxlgemeinderat9202 9 ай бұрын
nice! Yes another video which uses this in langchain would be cool!
@hl236
@hl236 8 ай бұрын
Yes please!
@TeamDman
@TeamDman 9 ай бұрын
Thank you for the great walkthroughs and insights! RAGatouille interface looks great, can't wait to mess around with it
@engineerprompt
@engineerprompt 9 ай бұрын
thanks, have fun :)
@yusufersayyem7242
@yusufersayyem7242 9 ай бұрын
Go Ahead Sir..... ❤
@engineerprompt
@engineerprompt 9 ай бұрын
thank you :)
@henkhbit5748
@henkhbit5748 9 ай бұрын
Thanks, would like to see a combination of colbert and langchain optimal chunking method.
@nirmalthacker8566
@nirmalthacker8566 9 ай бұрын
me too please
@mowlanicabilla5002
@mowlanicabilla5002 8 ай бұрын
Thanks for the clear and concise explanation.! What metrics can be used to evaluate the output of these models.?
@PoGGiE06
@PoGGiE06 7 ай бұрын
Super interesting. I want to use dspy with ragatouille/colbert2 for embedding and retrieval. I’d like to use llama index with a different vectordb, e.g. chromadb, pinecone, or qdrant. I want to use ollama with llama 3 to then summarise my retrieved rag data, and combine with some basic analysis of my own dataset. How feasible is that now? I assume that i can use dspy to finetrain on my specific analysis cases if necessary.
@youngchrisyang
@youngchrisyang 6 ай бұрын
Great content, thanks! Also curious what tool did you use to come up with such beautiful graphs on the "blackboard"
@engineerprompt
@engineerprompt 6 ай бұрын
I use excalidraw.com
@borisrusev9474
@borisrusev9474 9 ай бұрын
So what's the disadvantage of using CoBERTv2? Or are you saying it's strictly better?
@engineerprompt
@engineerprompt 9 ай бұрын
At the moment, the number of vectors store supports are limited, I think only FAISS supports that. You will need a GPU to run this. In THEORY, it should perform better than dense retrieval but probably need better evals.
@LoveWorldamineK
@LoveWorldamineK 9 ай бұрын
yes please make the next video with RAG and integrate it and also please can you create for us a video tutorial demonstrating how to build a chatbot that inputs in XLS or CSV format, prompts the user for input, and provides charts as output. using OPENAI API
@utkarshtripathi9118
@utkarshtripathi9118 8 ай бұрын
Hii have you figured out solutions for this ??
@LoveWorldamineK
@LoveWorldamineK 8 ай бұрын
@@utkarshtripathi9118 Still m working on it
@sohelshaikhh
@sohelshaikhh 8 ай бұрын
Nicely explained! also, wanted to know about time comparision between embedding retrievers and colBERT
@engineerprompt
@engineerprompt 8 ай бұрын
From my experience, colBERT is usually faster.
@VenkatesanVenkat-fd4hg
@VenkatesanVenkat-fd4hg 9 ай бұрын
Can you discuss newly pdf handling with tables & docx files parser....
@THE-AI_INSIDER
@THE-AI_INSIDER 9 ай бұрын
Please make a video on Rag with a UI where input is a file pdf or csv + Colbert behind the scenes
@engineerprompt
@engineerprompt 9 ай бұрын
will do!
@shubhamvijayvargiya4119
@shubhamvijayvargiya4119 8 ай бұрын
Please make a video on how to handle dynamic tabular data in pdf to feed in llm and query on tables data, as tables structure gets messed up when creating vectors.
@JMai-ci9nl
@JMai-ci9nl 8 ай бұрын
Thanks for the video and sharing, I can't seem to pass the loader.load_data("Orca_paper.pdf") line in the colab notebook. The load_data call complains about 'str' has no 'name' attribute.
@JMai-ci9nl
@JMai-ci9nl 8 ай бұрын
fixed, you need documents = loader.load_data(pathlib.Path("Orca_paper.pdf")), the load_data expects a Path object, not str.
@JMai-ci9nl
@JMai-ci9nl 8 ай бұрын
BTW, the load_data() method by default parses the pdf page by page into multiple documents, in case you are wondering like I do.
@VenkatesanVenkat-fd4hg
@VenkatesanVenkat-fd4hg 9 ай бұрын
Can you discuss on tables in Pdf files for RAG & other .docx files loader as pdf parser but some os there......
@jaysonp9426
@jaysonp9426 9 ай бұрын
Wait for the second example you used GPT4 for embeddings instead of ada? Did I miss something?
@engineerprompt
@engineerprompt 9 ай бұрын
Its the tokenizer not the LLM. Probably can replace that with tiktoken package to get tokens.
@sanoussabarry4218
@sanoussabarry4218 8 ай бұрын
Gread job !!
@dheerajsai236
@dheerajsai236 6 ай бұрын
Whenever I am doing Rag.search ,I am getting the name of the document in contents rather than answers for the query . how do I solve it ? Please kindly help
@AdamTwardoch
@AdamTwardoch 8 ай бұрын
@engineerprompt Is there a reason why you design your videos so that they must be viewed on a large screen? The font used on the diagram slides is obviously completely unreadable on a phone.
@shameekm2146
@shameekm2146 9 ай бұрын
Thank you so much for this... :). I deal with large number of documents. I find dense retrieval is very bad at it. Let me check this approach and comment back.
@engineerprompt
@engineerprompt 9 ай бұрын
Please do share your experience. Would love to see what you find.
@ShreyasVaishnav
@ShreyasVaishnav 7 ай бұрын
How can we use this with Chroma ?
@Abdoana
@Abdoana 8 ай бұрын
So We can try this with local gpt?
@nicholasdudfield8610
@nicholasdudfield8610 9 ай бұрын
Nice!
@utkarshtripathi9118
@utkarshtripathi9118 8 ай бұрын
Please bring next video fast
@mohsenghafari7652
@mohsenghafari7652 9 ай бұрын
hi. please help me. how to create custom model from many pdfs in Persian language? tank you.
@aghast666
@aghast666 8 ай бұрын
As I dive into the world of storytelling and creative expression, VideoGPT emerged as my trusted ally, subtly enhancing the quality of my videos without stealing the spotlight.
Advanced RAG with ColBERT in LangChain and LlamaIndex
13:35
Prompt Engineering
Рет қаралды 11 М.
Stop Losing Context! How Late Chunking Can Enhance Your Retrieval Systems
16:49
Enceinte et en Bazard: Les Chroniques du Nettoyage ! 🚽✨
00:21
Two More French
Рет қаралды 42 МЛН
Правильный подход к детям
00:18
Beatrise
Рет қаралды 11 МЛН
The Best RAG Technique Yet? Anthropic’s Contextual Retrieval Explained!
16:14
Anthropic's new improved RAG: Explained (for all LLM)
33:54
Discover AI
Рет қаралды 5 М.
LightRAG & LongRAG Explained: Cutting-Edge RAG Techniques in AI
17:21
18 Months of Pgvector Learnings in 47 Minutes (Tutorial)
47:13
Better RAG: Hybrid Search in Chat with Documents | BM25 and Ensemble
16:08
Prompt Engineering
Рет қаралды 23 М.
LightRAG: A More Efficient Solution than GraphRAG for RAG Systems?
19:49
Prompt Engineering
Рет қаралды 40 М.
GraphRAG: The Marriage of Knowledge Graphs and RAG: Emil Eifrem
19:15
Contextual Retrieval with Any LLM: A Step-by-Step Guide
15:37
Prompt Engineering
Рет қаралды 26 М.
The 5 Levels Of Text Splitting For Retrieval
1:09:00
Greg Kamradt
Рет қаралды 84 М.
Semantic Chunking for RAG
29:56
James Briggs
Рет қаралды 27 М.