OH MY GOD!!!!!!!!!!!!!!!! THE BEST CHANNEL!!!!!!!!!!!
@aliscais6033 Жыл бұрын
Ihave a bit another solution with substitutions: (sinx)^2 = a; (cosx)^2 = b Then we have system of two equations: a^4 + b^4 = 97/128, a + b = 1 (a + b)^4 = a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4 = a^4 +b^4 + ab(4*(a+b)^2 - 2ab) 1 = 97/128 + 4ab - 2*(ab)^2 ab = y 1 = 97/128 + 4y - 2*y^2 2*y^2 - 4y + 2 = 1 + 97/128 = 225/128 (y - 1)^2 = 225/256 = (15/16)^2 y = 31/16 or y = 1/16 y = ab = (sinx)^2 * (cosx)^2 = 1/4 * (sin2x)^2 (sin2x)^2 = (31)^(1/2)/4 > 1 => no solution (sin2x)^2 = 1/4 => sin2x = +-1/2 2x = +- pi/6 + pi*n x = +- pi/12 + pi*n/2
@honestadministrator Жыл бұрын
From 4-53 mnt onwards another way be used (2 cos(2x)) ^4 + 24 (2 cos(2x)) ^2 - 81 = 0 (( 2 cos(2x)) ^2 + 27 ) ( (2 cos(2x)) ^2 -3 ) = 0 or cos (2x) = √3/2, - √3/2, or 2x = n*π + π/6, n*π - π/6, or x = n*π /2 + π/12, n*π/2 - π/12 Hereby cos(2x)
@adailtonjunior37362 жыл бұрын
i found 4 solutions , and wolfram alpha find the same solutions and more one solution! I solved this question this way: (sen^2+cos^2)^4=sen^8+cos^8+2(sencos)^2(2(sen^4+cos^4)+3(sencos)^2) and this is equal to 1 because sen^2+cos^2 is equal to 1 than i supstitue (sencos)^2 with p and found that sen^4+cos^4 is equal to 1-2p. Then i put this in the first equation and found two values to p, that makes we found 4 values to (sencos)^2 and with this values we find 8 values to sen+cos, but some of them we dont count Than, i supstitute cos(x) with sen(pi/2 - x) to get sen(x)+ sen(pi/2 - x) that is equal to sqrt(2)(cos(x-pi/4), and finally we set this to be equal to the values we found before, findind 4 solutions for x i dont think you will read this, but i really appreciate your videos and sorry for my bad english, thats it!
@voltalimwabbit54922 жыл бұрын
The solutions are x = 15, 75, 105 and 165 if we use a quadratic equation where u = cos^2 2x and we will find x = 1/2 sqrt3 and -1/2 sqrt3
@ashishpradhan96064 жыл бұрын
It's a nice approach!!!
@SyberMath4 жыл бұрын
Thank you! 😊
@user-ez1in7rq6w3 жыл бұрын
When you got to cos⁴2x + 6cos²2x + 1 = 97/16 you could've just supstitute cos²2x with t and solve a quadratic equation
@SyberMath3 жыл бұрын
That's right!
@KevinAPamwar Жыл бұрын
nice.... you used Cos(2X)
@cameronspalding9792 Жыл бұрын
@ 4:54 I would have chosen to let u=cos^2(2x) and turn it into a quradratic
@stu0072 жыл бұрын
Another question please : if cos^10(x) + sin^10(x)=11/36, find cos^12x+sin^12x
@yapsiauwsoengie65072 жыл бұрын
13/54
@hkemal27434 жыл бұрын
To the point!
@SyberMath4 жыл бұрын
Thanks!
@barakathaider63333 жыл бұрын
👍👍
@ИванИванов-я4л1в3 жыл бұрын
Hello! I have solved it in a different way
@SyberMath3 жыл бұрын
How?
@ИванИванов-я4л1в3 жыл бұрын
@@SyberMath I do not know why but my answers are deleted
@VerSalieri3 жыл бұрын
Is the comment section too small for the solution?
@AllanPoeLover3 жыл бұрын
2:40看不懂了
@yapsiauwsoengie65072 жыл бұрын
4a³b and 4ab³ will be eliminated when (a-b)⁴+(a+b)⁴ expanded
@theuserings2 жыл бұрын
in (a-b)⁴, 4a³b and 4ab³ will be the negative terms, so when added with (a+b)⁴, where all the terms are positive, 4a³b and 4ab³ terms will be eliminated