De-nesting An Interesting Radical

  Рет қаралды 2,416

SyberMath

SyberMath

Күн бұрын

Пікірлер: 25
@matthewfeig5624
@matthewfeig5624 10 күн бұрын
You basically have the answer on the screen at 1:45 from your warm-up problem! cbrt( 7 + 5sqrt(2) ) = 1 + sqrt(2) Just multiply both sides by 2^(1/6) = cbrt( sqrt(2) ) to get the expression we want on the left. cbrt( 10 + 7sqrt(2) ) = 2^(1/6)*[ 1 + sqrt(2) ]. (This is the form of the answer that @Blaqjaqshellaq stated.)
@stevenngov6405
@stevenngov6405 10 күн бұрын
YOO THAT AWESOMEE
@davidseed2939
@davidseed2939 10 күн бұрын
5:30 k=1/2 a^3=4. BUT HARD to.see. might be easier trying a=rb, results in r=2
@dannkod
@dannkod 10 күн бұрын
Right. Or you can divide the polynomial 20k³ - 42k² + 30k - 7 = 0 with k³ and substitute y=1/k and have y=2 and then k=1/2 if you did b=ak substitution.
@alipourzand6499
@alipourzand6499 11 күн бұрын
Unexpected result! Hope once you will make a video about rationalizing cube roots in denominator.
@lhdill2009
@lhdill2009 9 күн бұрын
Syber, I'm trying to understand the implications of your solution to related de-nesting problems. From what I understand, the norm of 10+7 sqrt(2) is (10+7 sqrt(2) )*(10-7 sqrt(2) ) = 100 - 98 = 2. Because the cube root of 2 is irrational, any attempt to write [10+7 sqrt(2) ]^(1/3) = a + b sqrt(2) will lead to irrational values of a and b rather than rational values, which we greatly prefer. This is because [10-7 sqrt(2) ]^(1/3) must be a - b sqrt(2) -- is this correct? -- so that the norm of these cube roots will be a^2 - 2 b^2 = 2^(1/3). Since the RHS of this expression is irrational, a or b or both a and b must also be irrational. Is this the gist of the argument? If we multiply 10+7 sqrt(2) by some constant C, the norm of the resulting expression will be 2 C^2. If we want the norm to be 2^3 = 8, then C^2 = 4 and C = 2 (or -2). When we then set [C(10+7 sqrt(2)) ]^(1/3) =[20+14 sqrt(2) ]^(1/3) = a + b sqrt(2), the corresponding norm will be a^2 - 2 b^2 = 2. The RHS of this expression, 2, is rational. But this doesn't mean that both a and b are also rational -- just that they might be rational. Alternative, we could have selected a new norm of 1 by requiring 2 C^2 = 1. Then C = 1/sqrt(2) = sqrt(2)/2. We would then be seeking (5 sqrt(2) + 7)^(1/3) = a sqrt(2) + b with 2 a^2 - b^2 = 1. Again, the RHS, 1, is rational which means that the coefficients a and b might also be rational. Choosing a = b = 1 here gives the desired result for the cube root. Now, let's consider the nth root of 5 sqrt(2) + 7; that is we want to de-nest (5 sqrt(2) + 7)^(1/n) , where n is a positive integer. We investigate and find the norm is 1 (as found above). Because any power of 1 is 1 (but, of course, there are complex roots of unity), we can expect that (5 sqrt(2) + 7)^(1/n) = a sqrt(2) + b is true, but should not expect a and b to be rational in general. Is this correct?
@philipfoy7117
@philipfoy7117 10 күн бұрын
Wow! Had no technic to this, I just intuitively thought to 3rd power 2+√2 and then worked from there. It work interestingly.
@Blaqjaqshellaq
@Blaqjaqshellaq 10 күн бұрын
The solution can also be presented as 2^(1/6)*[1+2^(1/2)].
@perkin524
@perkin524 10 күн бұрын
Baffling!
@scottleung9587
@scottleung9587 11 күн бұрын
Nice!
@yurenchu
@yurenchu 11 күн бұрын
³√(10 + 7√2) = = ³√( [ 5√2 + 7 ]*√2 ) = ³√( [ (2+3)√2 + (6+1) ]*√2 ) = ³√( [ 2√2 + 3√2 + 3*2 + 1 ]*√2 ) = ³√( [ 2√2 + 3*2 + 3√2 + 1 ]*√2 ) = ³√( [ (√2)³ + 3(1)(√2)² + 3(1²)√2 + 1³ ]*√2 ) = ³√( [ (√2 + 1)³ ]*√2 ) = ³√( [ (√2 + 1) * ⁶√2 ]³ ) = (√2 + 1) * ⁶√2 = ³√(2²) + ⁶√2 = ³√4 + ⁶√2
@hazalouldi7130
@hazalouldi7130 10 күн бұрын
very nice
@simonrosin7818
@simonrosin7818 9 күн бұрын
how to compare sqrt(8)^7 with sqrt(7)^8
@yakupbuyankara5903
@yakupbuyankara5903 9 күн бұрын
(2+(2^(1/2))/(2^(1/3))^3
@buzzybola
@buzzybola 11 күн бұрын
I got 11/4 doing it in my head in less than a minute lol
@Waffle_6
@Waffle_6 11 күн бұрын
no you didn’t
@rakenzarnsworld2
@rakenzarnsworld2 11 күн бұрын
​​@@Waffle_6The actual answer is 27/10
@CriticSimon
@CriticSimon 10 күн бұрын
You should be spending more time on your solutions! 😆
@buzzybola
@buzzybola 10 күн бұрын
@@CriticSimon nah man fast approximations > slow accuracy
@forcelifeforce
@forcelifeforce 10 күн бұрын
@@buzzybola -- *No, fast on attempting your solution equals a wrong answer.* "Haste makes waste." You have a garbage post.
@GourangaPL
@GourangaPL 10 күн бұрын
Now that's one thing i still don't understand, when can you use that b = ak to get one equation from a system?
@SyberMath
@SyberMath 10 күн бұрын
@@GourangaPL when the system is homogeneous meaning this substitution upon division will yield an equation in a single variable. You can tell by the sum of the powers in each term (it’s always 3)
@GourangaPL
@GourangaPL 10 күн бұрын
@@SyberMath ah i see, so the sum of powers is the same, can we do similar thing with for example 3 equations 3 variables if every term has the same sum of powers? like b = ak and c = al ?
Interesting Radicals
9:37
SyberMath
Рет қаралды 2,3 М.
Find all real candidates for x
11:51
Prime Newtons
Рет қаралды 58 М.
“Don’t stop the chances.”
00:44
ISSEI / いっせい
Рет қаралды 62 МЛН
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН
Правильный подход к детям
00:18
Beatrise
Рет қаралды 11 МЛН
A Special Radical Equation 😁
11:00
SyberMath
Рет қаралды 442
When Proof By Induction Fails
7:53
Dr Barker
Рет қаралды 24 М.
An Interesting Exponential Expression
8:59
SyberMath
Рет қаралды 3,3 М.
A Nice Infinite Sum #sequencesandseries
6:03
SyberMath Shorts
Рет қаралды 4,2 М.
0⁰ = 1 Proof
2:21
Destined Emporium
Рет қаралды 5 М.
A Nice Radical Expression
8:27
SyberMath
Рет қаралды 14 М.
Solve This Math Mystery: Tilted and Inscribed Semicircle Area
15:46
The Phantom of the Math
Рет қаралды 11 М.
France l can you solve this?? l Olympiad Mathematics
18:01
Math Master TV
Рет қаралды 536 М.
Heron's formula (example and proof)
17:47
bprp math basics
Рет қаралды 68 М.
A Nice Radical Equation #radicals #algebra
11:36
SyberMath Shorts
Рет қаралды 1 М.
“Don’t stop the chances.”
00:44
ISSEI / いっせい
Рет қаралды 62 МЛН