An Infinite Radical With A Special Flavor

  Рет қаралды 3,560

SyberMath

SyberMath

Күн бұрын

🤩 Hello everyone, I'm very excited to bring you a new channel (aplusbi)
Enjoy...and thank you for your support!!! 🧡🥰🎉🥳🧡
/ @sybermathshorts
/ @aplusbi
❤️ ❤️ ❤️ My Amazon Store: www.amazon.com...
When you purchase something from here, I will make a small percentage of commission that helps me continue making videos for you.
If you are preparing for Math Competitions and Math Olympiads, then this is the page for you!
CHECK IT OUT!!! ❤️ ❤️ ❤️
❤️ A Differential Equation | The Result Will Surprise You! • A Differential Equatio...
❤️ Crux Mathematicorum: cms.math.ca/pu...
❤️ A Problem From ARML-NYSML Math Contests: • A Problem From ARML-NY...
❤️ LOGARITHMIC/RADICAL EQUATION: • LOGARITHMIC/RADICAL EQ...
❤️ Finding cos36·cos72 | A Nice Trick: • Finding cos36·cos72 | ...
⭐ Join this channel to get access to perks:→ bit.ly/3cBgfR1
My merch → teespring.com/...
Follow me → / sybermath
Subscribe → www.youtube.co...
⭐ Suggest → forms.gle/A5bG...
If you need to post a picture of your solution or idea:
in...
#radicals #radicalequations #algebra #calculus #differentialequations #polynomials #prealgebra #polynomialequations #numbertheory #diophantineequations #comparingnumbers #trigonometry #trigonometricequations #complexnumbers #math #mathcompetition #olympiad #matholympiad #mathematics #sybermath #aplusbi #shortsofsyber #iit #iitjee #iitjeepreparation #iitjeemaths #exponentialequations #exponents #exponential #exponent #systemsofequations #systems
#functionalequations #functions #function #maths #counting #sequencesandseries
#algebra #numbertheory #geometry #calculus #counting #mathcontests #mathcompetitions
via @KZbin @Apple @Desmos @NotabilityApp @googledocs @canva
PLAYLISTS 🎵 :
Number Theory Problems: • Number Theory Problems
Challenging Math Problems: • Challenging Math Problems
Trigonometry Problems: • Trigonometry Problems
Diophantine Equations and Systems: • Diophantine Equations ...
Calculus: • Calculus

Пікірлер: 28
@ЕленаСибирячка-к5у
@ЕленаСибирячка-к5у 5 ай бұрын
It's fantastic!
@RobG1729
@RobG1729 5 ай бұрын
Nice accompnying my morning coffee!
@FisicTrapella
@FisicTrapella 5 ай бұрын
very nice!! 👌
@Blaqjaqshellaq
@Blaqjaqshellaq 5 ай бұрын
That last sum isn't e - (e-1), it's (e-1) - (e-2).
@maxvangulik1988
@maxvangulik1988 5 ай бұрын
i just turned it into a telescoping series. I wasn't evaluating allat.
@snejpu2508
@snejpu2508 5 ай бұрын
You can also calculate the value of the series by taking the series for e^x, dividing both sides by x, taking the derivative of both sides, and substitution x=1. It gives you the answer of 1. :-)
@SyberMath
@SyberMath 5 ай бұрын
Don't we get an extra -1 at the end if I did it correctly?
@black_eagle
@black_eagle 5 ай бұрын
Yay I got this one. Took me a while to get the expression in terms of a product of exponents of 2, I wasn't clever enough to see that I could just distribute the exponents inside the radicals so I came up with a recurrence relation using ratios of successive terms and eventually found the pattern. A nice contrived problem ;)
@scottleung9587
@scottleung9587 5 ай бұрын
Awesome!
@sadeghradjai7716
@sadeghradjai7716 5 ай бұрын
Bravo...very nice
@gregevgeni1864
@gregevgeni1864 5 ай бұрын
Smart 🎉🎉
@maxwellarregui814
@maxwellarregui814 5 ай бұрын
Señores: SyberMath. Reciban un cordial saludo, Gracias por este ejercicio muy bueno, ya logré entenderlo; por favor sería bueno otro parecido como refuerzo. Éxitos.
@SyberMath
@SyberMath 5 ай бұрын
¡Gracias!
@positivenozy6065
@positivenozy6065 5 ай бұрын
Interesting.. Thank you for sharing this problem. Could you tell me how to solve this kind of calculus tasks? Hard level or even Olympiad. Looking forward for your answer!
@leonardobarrera2816
@leonardobarrera2816 5 ай бұрын
Power series?? Hahaha
@phill3986
@phill3986 5 ай бұрын
👍Nice, but for good form I'd show limit of last term goes to zero as n goes to infinity
@LC95297
@LC95297 5 ай бұрын
Limit when n tends to infinite of 2^[n/(n+1)], which is 2¹ so 2.
@buff9943
@buff9943 5 ай бұрын
I found 2**(3/2)
@nasrullahhusnan2289
@nasrullahhusnan2289 5 ай бұрын
Let x=sqrt[2×cbrt{4×qtrt(8...)}] =sqrt[2×cbrt}2²×qtrt(2³...)}] =sqrt[cbrt{2⁵×qtrt(2³...)}] =sqrt[cbrt{qtrt(2²³...)}] =(2²³...)^(½×⅓×¼×...) Therefore x=2
@usmonaliumarov1136
@usmonaliumarov1136 5 ай бұрын
Iʼm from Uzbekistan Doim kuzataman
@yusufdenli9363
@yusufdenli9363 5 ай бұрын
Time 7.57 That is not e. That is (e -1) And the other one is (e - 2) (e -1) - (e - 2) =1
@SyberMath
@SyberMath 5 ай бұрын
oopsies!
@misterdubity3073
@misterdubity3073 5 ай бұрын
Quick and dirty estimate. Pretend there is no (...). Go step by step starting with the 8, then the 4th root, then the 4 etc: 2^3; 2^3/4; 2^11/4; 2^11/12; 2^23/12; 2^23/24 looks pretty close to 2. Faster way maybe for a multiple choice test.
@Nothingx303
@Nothingx303 5 ай бұрын
It's Πορτοκαλί flavor 😋 😜 🤪
@armacham
@armacham 5 ай бұрын
another way to solve: define a function f(n) such that: f(n) = (2^(n-1) * f(n+1) ) ^(1/n) and we want to find f(2) logbase2 both sides to get: log2(f(n)) = (1/n) * log2( 2^(n-1) * f(n+1) ) log2(f(n)) = (1/n) * ( n - 1 + log2(f(n+1)) log2(f(n)) = 1 - 1/n + log2(f(n+1))/n log2(f(n)) - 1 = (log2(f(n+1)) - 1)/n define a new function g(n) = log2(f(n)) - 1 now we can say g(n) = g(n+1)/n so g2 = g3/2 and g3 = g4/3 and g4 = g5/4 if g2 = g3/2 then we can substitute in g4/3 for g3 to get: g2 = g4/6 and from here it's clear g2 = g(m+1)/m! for all values of m we can show that g(m+1) increases slower than m! increases so that as m goes to infinity, g(m+1)/m! = 0 meaning g(2) = 0 use the definition of g(2) to get: g(2) = log2(f(2)) - 1 = 0 log2(f(2)) = 1 f(2) = 2 and that's the answer we were looking for
@maxvangulik1988
@maxvangulik1988 5 ай бұрын
R=2^1/2•4^1/6•8^1/24•... R=prod[n=2,♾️]((2^(n-1))^(1/n!)) R=prod[n=2,♾️](2^((n-1)/n!)) ln(R)=ln(2)•sum[n=2,♾️]((n-1)/n!) ln(R)=ln(2)•sum[n=2,♾️](1/(n-1)!-1/n!) ln(R)=ln(2) R=2
@yoav613
@yoav613 5 ай бұрын
Noice!
Can You Simplify A Radical?
8:33
SyberMath
Рет қаралды 15 М.
An Interesting Exponential Equation
12:11
SyberMath
Рет қаралды 3,9 М.
진짜✅ 아님 가짜❌???
0:21
승비니 Seungbini
Рет қаралды 10 МЛН
OCCUPIED #shortssprintbrasil
0:37
Natan por Aí
Рет қаралды 131 МЛН
An Interesting Nonstandard Equation from @SyberMath😄
9:27
SyberMath
Рет қаралды 1,8 М.
A Very Nice Exponential Equation
8:51
SyberMath
Рет қаралды 4,5 М.
Extending the Harmonic Numbers to the Reals
15:17
Lines That Connect
Рет қаралды 354 М.
How To Catch A Cheater With Math
22:38
Primer
Рет қаралды 6 МЛН
Math for fun, sin(z)=2
19:32
blackpenredpen
Рет қаралды 1,8 МЛН
A Very Interesting Rational Equation
12:43
SyberMath
Рет қаралды 3,1 М.
A Proof That The Square Root of Two Is Irrational
17:22
D!NG
Рет қаралды 7 МЛН
Making an atomic trampoline
58:01
NileRed
Рет қаралды 11 МЛН
The Genius Way Computers Multiply Big Numbers
22:04
PurpleMind
Рет қаралды 340 М.