t-SNE Simply Explained

  Рет қаралды 15,772

ritvikmath

ritvikmath

Күн бұрын

Пікірлер: 34
@SasukeBlackHeart94
@SasukeBlackHeart94 8 ай бұрын
this guy's seriously underrated
@ravindrasonawane1997
@ravindrasonawane1997 12 күн бұрын
Wonderful. You have explained so complicated algorithm so elegantly. Thanks a lot!!
@SleekGreek
@SleekGreek Жыл бұрын
Your channel is such a gem. I hope you get more attention, you deserve praise the likes of of 3B1B and orgo chem tutor or professor Leonard
@ritvikmath
@ritvikmath Жыл бұрын
Thanks! 😃
@MrErick1160
@MrErick1160 Жыл бұрын
I don't think I've ever been explained something so well. I feel like a genius right now! thank you haha
@jameslucas5590
@jameslucas5590 Жыл бұрын
This guy is great. Wish I had you back in 2013. For your audience that wants to practice in R. # Load required library for t-SNE library(Rtsne) # Generate a random dataset with 100 data points and dimensionality of 10 set.seed(123) n
@ritvikmath
@ritvikmath Жыл бұрын
thanks!
@hungchen6604
@hungchen6604 Жыл бұрын
Thanks for the great explanation, especially on why using Cauchy in the low-dim space!
@ritvikmath
@ritvikmath Жыл бұрын
Glad it was helpful!
@emmanuellawal2694
@emmanuellawal2694 Жыл бұрын
I'm just flooding my brain with new information, I believe I'll understand it indue time. Nice video as always
@ritvikmath
@ritvikmath Жыл бұрын
thanks!
@priyaarora7169
@priyaarora7169 Жыл бұрын
This channel is a gem, unfortunately found out so late. Could u also make a complete series on ML / DL / NN / Generative AI concepts with practical tutorials too?
@Myexpectationsarerealistic
@Myexpectationsarerealistic Ай бұрын
We usually convert this into a Harmonic series though; as the negative is viewed as being across the Complex Plane, which is generally not useful for probabilities outside of needing statistical inferencing. In many models, they resize to fit between 0-1. Which keeps the size of the integers reasonable.
@simpleme989
@simpleme989 8 ай бұрын
Extremely well done! thank you for sharing this.
@Daily_language
@Daily_language 8 ай бұрын
very clear explanation and help me understand t-sne. Great job! Subscribed your channel
@felix1840
@felix1840 Жыл бұрын
Awesome as usual!
@alisamalakhova
@alisamalakhova 3 ай бұрын
such a great explanation!
@avinashanand2163
@avinashanand2163 Жыл бұрын
Amazing Content. Please make more videos, your videos are so easy to understand. Thanks a lot
@ritvikmath
@ritvikmath Жыл бұрын
Thank you!
@mrinmoybanik5598
@mrinmoybanik5598 6 ай бұрын
Thanks for the precise explanation 👍!
@priyaarora7169
@priyaarora7169 Жыл бұрын
Hi Ritvik, could u make a video for time-series data with explanation of different seasonalities (weekend, week-days, daily, hourly etc). Main ask is to understand how to analyse one data for seeing different seasonalities, and modeling it. Moreover, a video of applying different time-series models on the same?. Thank will be very useful for people like me who have just started learning time-series dataset. Thank you very much for your efforts, and time
@nibydlo
@nibydlo 10 ай бұрын
This wasn't easy, but finally I got the idea. Thank you!
@zakariaelkazdam7077
@zakariaelkazdam7077 9 ай бұрын
Amazing explanation , thank you !!!
@diabolo19x
@diabolo19x Жыл бұрын
Super video! What about a video on the maths and intuition behind variational auto encoders ?❤
@ritvikmath
@ritvikmath Жыл бұрын
Great suggestion!
@Mars.2024
@Mars.2024 4 ай бұрын
Great as always🌱, would you please mention free datasets or examples of real world projects where we should use the tSNE approach.
@shashanksistla5400
@shashanksistla5400 Жыл бұрын
Hi Ritvik. I believe you've glanced over the fact that when normalizing the similarities in high-dimensional space, we use just the pairs with the point in question (i), but when normalizing the similarities in the low-dimensional space, we use all pairwise points. What is the intuition behind this?
@woodworkingaspirations1720
@woodworkingaspirations1720 7 ай бұрын
Beautiful lecture
@FIRETIGER49
@FIRETIGER49 Жыл бұрын
you dint over-explain believe me! XD. Overall superbly explained, thank you very much!
@includestdio.h8492
@includestdio.h8492 Жыл бұрын
Wow... thank u, u really the best
@张晓峰-m2p
@张晓峰-m2p Жыл бұрын
very good !!!
@jaivratsingh9966
@jaivratsingh9966 8 ай бұрын
super!
@riteshdadlani353
@riteshdadlani353 Жыл бұрын
What a great fucking video
@mabmab100
@mabmab100 7 ай бұрын
its KŌ-SHE
Multiclass Classification : Data Science Concepts
13:35
ritvikmath
Рет қаралды 13 М.
BAYGUYSTAN | 1 СЕРИЯ | bayGUYS
36:55
bayGUYS
Рет қаралды 1,9 МЛН
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН
The KL Divergence : Data Science Basics
18:14
ritvikmath
Рет қаралды 54 М.
Why You Shouldn't Trust Your ML Models (...too much)
16:07
ritvikmath
Рет қаралды 6 М.
The Most Important Algorithm in Machine Learning
40:08
Artem Kirsanov
Рет қаралды 546 М.
Gaussian Processes : Data Science Concepts
24:47
ritvikmath
Рет қаралды 16 М.
Random Forests : Data Science Concepts
15:56
ritvikmath
Рет қаралды 49 М.
Kernel Density Estimation : Data Science Concepts
25:52
ritvikmath
Рет қаралды 30 М.