什么样的投资值得做?圣彼得堡悖论是怎么回事?李永乐老师讲边际效用递减

  Рет қаралды 624,864

李永乐老师

李永乐老师

Күн бұрын

Пікірлер: 825
@waterfishoi
@waterfishoi 6 жыл бұрын
李老師,我是讀精算(一個包含統計,慨率,經濟,隨機過程等等的學科)的。看完你的講解我才知道「效用」的由來,你講得比很多教授都要好。
@jeffdeng4603
@jeffdeng4603 6 жыл бұрын
Henry 这是很基础的eco知识了
@yilinye1058
@yilinye1058 6 жыл бұрын
Henry 巧了,我也是学精算的😎
@柘佴卅拉蒙特
@柘佴卅拉蒙特 6 жыл бұрын
精算和高数关系大还是和统计关系大?本人萌新求解
@irvin1241
@irvin1241 6 жыл бұрын
柘佴卅拉蒙特 都要,少了谁都不行,两者都要学好
@Dyangable
@Dyangable 6 жыл бұрын
utility functions和finance的關係比較密切
@nikita19891119
@nikita19891119 3 жыл бұрын
每天中午看李永乐老师的视频,会给人带来非常多的正能量,对这个世界的认知也越来越宏观。真的非常感谢李老师,教书育人,给和我一样的很多人带来进步的希望,让我们对科学更进一步。
@陈旦-h8z
@陈旦-h8z 6 жыл бұрын
数学模型是最能揭示事物本质的工具,李老师太棒咯!希望再多一些经济学和统计学的知识,帮助我们碾压生活中奸商的三寸烂舌。
@明軒-m6z
@明軒-m6z 6 жыл бұрын
這個問題很重要 是人類第一次去思考風險下的投資 此後才慢慢導出財務管理學理論中的風險溢酬 不是不能有風險 而是要有足夠的風險溢酬才值得我們投資 不是純看期望值 而是為凹函數的效用 當初能想出這個問題的伯努力的是奇才 開啟了一個全新的領域
@williesen4957
@williesen4957 3 жыл бұрын
👏👏👏
@junwang6565
@junwang6565 4 жыл бұрын
李老师已经做到了:让我们以最低的成本获得最优质的教育。谢谢老师!
@shitaolin9439
@shitaolin9439 5 жыл бұрын
真的,我这种拥有理科抗体的人看了永乐老师的视频都起了很大的学习兴趣。。。真的感谢永乐老师!
@elva.dongfangye4675
@elva.dongfangye4675 5 жыл бұрын
刚好听到薛兆丰教授的经济学课边际的概念,理一下我自己的思路顺便做个笔记: 边际就是“新增”带来的“新增”。边际效用是你多消耗一个单位的商品,所能带来的新增的享受。在这里需要理清楚边际成本(每新增一个单位产品,所需要新增的成本)的概念,因为边际效用和边际成本是一个成对的概念,例如我们吃馒头,吃第一块馒头带来的边际效用很高,第二块就会减少一点,第三块再少一点,一步一步减下去就叫边际效用递减。但与此同时,每吃一块馒头都要付出一定的成本,可以是金钱的或者其他,比如你要为所吃的馒头付钱,这时候边际效用递减,见到一定程度,边际效用就会低过你为馒头所付出的成本,这时候你就决定收手lol 吃馒头的边际效用 > 为多吃一个馒头所付出的边际成本 = 你会继续吃馒头 吃馒头的边际效用 < 为多吃一个馒头所付出的边际成本 = 你停止吃馒头 总结:人们总会朝着边际平衡的方向迈进,边际收益要尽量等于边际成本。 天下没有免费的午餐,出来混总是要还的!
@angelo11111
@angelo11111 6 жыл бұрын
經過學生到出社會我悟出一個道理 什麼投資值得做? 就是投胎的時候要選對家庭啊~~~~ 開玩笑的啦 最好的投資就是持續觀看 李老師的科普視頻
@张军毅-i2k
@张军毅-i2k 6 жыл бұрын
安傑洛 第二个硬币游戏的规则按照老师的讲法难道不是正反面都是2元嘛?还是我看错了?那这样正反面的概率一样?收益一样,有什么意义吗?
@新竹張學友
@新竹張學友 6 жыл бұрын
做人子女要慎選父母
@hwopa371
@hwopa371 6 жыл бұрын
@@张军毅-i2k 投一次結束是反面收益為2,投兩次結束是正面.反面收益是4,如果第一次是正面才會有第二次。
@杨神
@杨神 5 жыл бұрын
难度太低,下次我要投伊拉克叙利亚。
@Anonymous-if9mp
@Anonymous-if9mp 4 жыл бұрын
@@杨神 干啥呢,想要七个处女?
@xshill8160
@xshill8160 6 жыл бұрын
这小朋友一看就知道是要干大事的人🚀
@samuelwu9598
@samuelwu9598 5 жыл бұрын
看錯這小朋友要干大人的事
@yantingxiao4167
@yantingxiao4167 5 жыл бұрын
@@samuelwu9598发车了?
@alexlu7012
@alexlu7012 6 жыл бұрын
看完李老师的视频,我的满意度很高!
@出厂出厂
@出厂出厂 3 жыл бұрын
很高 就是 2 哈哈哈哈
@vancedytb4401
@vancedytb4401 3 жыл бұрын
@@出厂出厂 你o们ozO
@LiLuCouple214
@LiLuCouple214 5 жыл бұрын
高效率的老师真的很重要,如果您是我的研究生讲师,我上课全勤,每一分钟都很有趣👍🏻👍🏻
@洪鏮展
@洪鏮展 4 жыл бұрын
有這樣的師資教授我花幾十萬來程請我都願意
@mincui6504
@mincui6504 4 жыл бұрын
李永乐老师 您让深刻体会到了以前的数学题不是白做的 更重要的是 您让我学到了什么是学以致用 超级感谢
@kaideechu
@kaideechu 5 жыл бұрын
很欣賞李老師用顯明易懂的例子解釋深入的科學。
@frankkkmate4267
@frankkkmate4267 3 жыл бұрын
李老师的视频伴随我高中高考,现在读大学了概率论还是靠李老师的视频哈哈哈哈真是我的大救星
@exis8
@exis8 5 жыл бұрын
伯努利的这个解释有些牵强了!本题反应的不是"边际效用递减",而是"非理性思维",既是人类思维和数学是有差异的。比如说,我出8192块钱,那么我必须连续玩到第14次才能赚钱,也就是2^13 = 8192。但是连续14次都能正面的概率是1/16384。正常人当然不会玩了。所以本题讨论的道理就是:数学上概率和收益可以算乘积,乘号前面和后面是不影响结果的的;但是这不符合人思考的方式,人在这种情况下考虑的优先是概率 (亏钱的可能性),之后才是收益(赚钱的数量)。其实可以用来证明老师讲的另一个原理,就是人的风险偏好在收益和损失的情况下是不同的。另外,第二个半价是为了分享,不是为了一个人吃两个 :)
@areswey3656
@areswey3656 4 жыл бұрын
永乐老师就是神啊!,各行各业都能讲,超级偶像啊!
@劉經邦-r8x
@劉經邦-r8x 4 жыл бұрын
上了2年的經濟學,不如聽李老師講10分鍾,我真是慚愧啊!
@杨大标
@杨大标 4 жыл бұрын
人家是清华加北大的才子
@never737
@never737 6 жыл бұрын
原来我懒惰只是为了获得我的个人满意度。 瞬间“懒惰”不再是罪恶。
@Steven-p3z
@Steven-p3z 4 жыл бұрын
听过这个节目后,满意度很高,👍
@bowa21
@bowa21 4 жыл бұрын
深入浅出,举一反三,李永乐老师太厉害了,听懂了,执行了,做投资就成功一大半了!
@yunyuhu3072
@yunyuhu3072 4 жыл бұрын
李老师真是老师,永远是提出问题, 解释问题,然后就需要你自己去解答问题:/
@nelsontan9580
@nelsontan9580 6 жыл бұрын
老师说的话非常中肯 “懒也是为了获得更高的满意度” 下次要是有人问我为什么懒 我就能用这些黑板上知识让他们闭嘴了。
@13141sophia
@13141sophia 4 жыл бұрын
呵~下班後懶在家, 這個"懶"真的是對自身有較高的滿意度耶^^. 謝謝李老師精彩的課程講解.
@蔺美云
@蔺美云 4 жыл бұрын
看了李老师的很多视频。感觉李老师身上有一种知识分子那种文邹邹的带点儿淡淡的坏的幽默, 很让人回味无穷。
@yingYang-zj5mp
@yingYang-zj5mp 5 жыл бұрын
特别喜欢您的频道,很有趣,对于数学不好的我但是很喜欢金融,贷款,投资等生活问题,越来越喜欢您的视频了。
@ogasac8530
@ogasac8530 6 жыл бұрын
看了老师的视频才明白 为什么说数学是深刻的
@asheepyang2961
@asheepyang2961 6 жыл бұрын
为了获得更高的满意度,钱只是必要因素,而不充分
@倀鬼
@倀鬼 6 жыл бұрын
😀
@Wind_of_Night
@Wind_of_Night 6 жыл бұрын
但這悖論,很怪,使用微積分概念,機率趨近於0,最終收益因該定有一個上限。但從公式概念下推又跟微積分概念牴觸。結果還是有問題....
@samstock3531
@samstock3531 6 жыл бұрын
經濟學是基礎科學的一種,本質都是數學
@Wind_of_Night
@Wind_of_Night 6 жыл бұрын
@@samstock3531 因該說,數學是萬物科學的基礎,因為是工具。量化研究各種事情。
@tobydeng1456
@tobydeng1456 6 жыл бұрын
今天才终于明白李老师坚持提示“视频有字幕”的用意。不方便的地方可以静音开字幕看视频😱
@tjlh2009
@tjlh2009 6 жыл бұрын
终于可以和老婆解释为什么下班后总躺着了。
@arthurchen2051
@arthurchen2051 6 жыл бұрын
跟老婆說,想多看看你,我的生命才有意義(滿意度更高)
@unalphaam3409
@unalphaam3409 6 жыл бұрын
跟老婆說,你躺着看起来更美
@Rex777able
@Rex777able 6 жыл бұрын
@@arthurchen2051 咸鱼。
@zixingzhu1939
@zixingzhu1939 6 жыл бұрын
李老师,玩两次就停止的话,是第一次正面得一元,第二次反面得两元,一共三元。为什么是四元呢?
@aaronlee1092
@aaronlee1092 6 жыл бұрын
@@zixingzhu1939 新游戏
@pnlintsai4279
@pnlintsai4279 6 жыл бұрын
總是提出很好玩有有意義的問題,然後再做一個完整的教學,又把一些高中教的設定成國中會的,讓所有人大致上都看的明白,厲害太厲害了
@tindama7226
@tindama7226 6 жыл бұрын
以前吃饭看剧 现在吃饭看李老师的视频 然后我就天天盼着吃饭^_^
@topvfhwhgroup1809
@topvfhwhgroup1809 3 жыл бұрын
支持博主!造就卓越品质的巅峰之作,时光传承经典,经典铭记时光。精艺开启优雅生活!
@3selijah831
@3selijah831 5 жыл бұрын
期望值 ? 平均收益 … 聖彼得堡 悖論 1713 年 ,很有趣 ~ 對了 願意 付出 多少 成本 ? 無限大 ? 流體力學。 滿意度 … 邊際效應遞減 ~ 解釋的 很好。 期望效用 ~ux…2 4元 ~風險 與 決策 的 運用?
@josong8174
@josong8174 4 жыл бұрын
啃两晚ppt不如听这15分钟,希望老师多讲一点关于投资期望的知识!
@刘勇-g2r
@刘勇-g2r 5 жыл бұрын
哲学 经济学 金融学 会计财务 逻辑学 语言学以及2-3种语言 数学 自己的专业, 这些起码是人必须学的, 其他的学科可以扩展-作为选修...
@nullnil5318
@nullnil5318 6 жыл бұрын
我是来普及知识的。。。。高中学点这些多好。。。轻松愉快涨见识。。。。非扣那些个破题!什么科举制度是先进的??你们家高考是科举,考公务员才是科举!!
@鸡哥我要给你生猴子
@鸡哥我要给你生猴子 5 жыл бұрын
高考是一个选拔性考试,不仅考知识,更是为了让人和人区分开来,优秀的大学资源就那么多,不可能让所有人去上好学校
@xiaohuizhao5068
@xiaohuizhao5068 4 жыл бұрын
所以中国叫死读书
@dreamandi5451
@dreamandi5451 3 жыл бұрын
@@xiaohuizhao5068 没有你认为的死读书 你翻身很难哦 哈哈
@richardliu3656
@richardliu3656 6 жыл бұрын
只用边际效用递减来解释麦当劳第二个半价不全面,因为很多时候是大于等于两个人一起去。个人认为主要原因是边际成本在一定范围内递减的,机器开启后生产一个产品所产生的固定成本和两个乃至10个区别很小,所以才第二杯半价
@이국생활
@이국생활 4 жыл бұрын
自己上学的时候要是遇到李老师,我也会是个学霸。老师的视频有毒,上瘾啊。😄
@keepmark9564
@keepmark9564 2 жыл бұрын
最后的例子太妙了,确实我也知道我再打份工可以多挣钱,但是我的满意度绝对会下降,除非能整的很多,但兼职不太可能
@亞洲自由-r1c
@亞洲自由-r1c 2 жыл бұрын
除非能整的很多,是什麼意思?
@ethanzheng4673
@ethanzheng4673 6 жыл бұрын
讲得太好了。深入浅出,充满智慧。
@msbelldrum
@msbelldrum 4 жыл бұрын
第二个投币游戏,和第一个投币游戏规则不同。第一个游戏:投正面一元,投反面两元。第二个:不管投正面反面,收益双倍(2翻4翻8翻16。。。2的n次方),并且投到反面游戏结束。注:我也有同样的疑问,所以专门去搜了一下圣彼得堡悖论。
@xiaohuizhao5068
@xiaohuizhao5068 4 жыл бұрын
刚才看的时候还想怎么回事?原来规则变了
@Su-Shi_Su-DongPo
@Su-Shi_Su-DongPo 6 жыл бұрын
現在的小朋友連投資都會了
@unalphaam3409
@unalphaam3409 6 жыл бұрын
蘇東坡 这小朋友可厉害了
@champsingxiang
@champsingxiang 6 жыл бұрын
不想貶到黃州去就得投資累積人脈
@edwardaa8692
@edwardaa8692 6 жыл бұрын
现在国内好多高中生都有创业风
@ZZWW
@ZZWW 6 жыл бұрын
@@edwardaa8692 学生创业大都为了泡妞,瞎玩
@倀鬼
@倀鬼 6 жыл бұрын
@@ZZWW 你確定🤔
@guanshu9993
@guanshu9993 5 жыл бұрын
好喜欢李老师的视频,每次看完感觉对这个课题看的更加透彻和清晰。还有就是想问李老师,圣彼得堡悖论是否可以运用在赌博的原理上?
@yiruicong2916
@yiruicong2916 5 жыл бұрын
效用的产生应该来源于“人类的时间也是有限的资源”。
@freelancerfree9782
@freelancerfree9782 5 жыл бұрын
非常有意思.这才叫书中自有黄金屋啊.虽然听不太懂但是听的如痴如醉.
@chk970222
@chk970222 6 жыл бұрын
总算给我懒找了个好借口,谢谢李老师
@roswellchou2785
@roswellchou2785 6 жыл бұрын
很喜歡永樂老師的悖論系列,學習了🤗🤗
@xueven310
@xueven310 6 жыл бұрын
支持李老师,每期都看,大学上课都没这么认真
@LinkChenTW
@LinkChenTW 6 жыл бұрын
我到這集才發現「小朋友」的族群還蠻廣泛
@廖紹丞-w9l
@廖紹丞-w9l 6 жыл бұрын
小朋友是天才,什麼問題都會提出來。
@ih6962
@ih6962 5 жыл бұрын
他指的應該是年紀比他小或年紀跟他小孩差不多的範圍吧?
@mizukisakura9763
@mizukisakura9763 5 жыл бұрын
谁还不是个小朋友呢
@taokai
@taokai 5 жыл бұрын
那个小朋友就是 提问题的我们;)
@octo2551
@octo2551 5 жыл бұрын
只要提问,就是小朋友
@peapoo4
@peapoo4 6 жыл бұрын
每期的话题都深入生活
@yehsai6163
@yehsai6163 Жыл бұрын
我是台灣人 謝謝老師,五星滿分感恩
@shengxu7591
@shengxu7591 6 жыл бұрын
悖论中提到的,投一次的收益是2,投两次的收益为啥是4了呢?投两次,第一次是正面收益是1,第二次反面收益是2,总收益是1+2=3啊.
@colindev
@colindev Жыл бұрын
因為這是遊戲規則 與第一個期望不要連在一起去看
@hillhopeman2405
@hillhopeman2405 6 жыл бұрын
哈哈哈,终于知道连出100次正面的概率怎么算了✌️,我就一直觉得抛硬币里有大学问,果然不出我所料😎
@haipengli4769
@haipengli4769 5 жыл бұрын
伯努利的游戏还有一个重要的前提:你有很多钱!当然如果可以先玩再付钱,那么理论上可以开出很高的价码
@000-x7h4g
@000-x7h4g 5 жыл бұрын
還有一個因素就是 人們對於虧損的痛苦逃避 花四塊錢有50%機率虧兩塊錢 25%機率回本 25%機率賺錢 虧錢的效用負值絕對值比賺錢的效用高 也可以解釋人們不想花大錢玩這遊戲
@vxtmcvxtmc6622
@vxtmcvxtmc6622 5 жыл бұрын
李老师 感谢您给我们讲了这么多数学故事!这个问题我觉得可以进一步讨论一下高阶无穷小的概念……
@user-rq3iu7sb4c
@user-rq3iu7sb4c 6 жыл бұрын
知識王啊
@Dllmgchs
@Dllmgchs 4 жыл бұрын
李老师你实在是太博学了,谢谢你的分享
@来见我夜晚大桥
@来见我夜晚大桥 3 жыл бұрын
讲得非常好非常清楚!
@kjz713
@kjz713 6 жыл бұрын
有好的老師真的太重要了...我是看不懂書的那種人..
@你大爷-e2u
@你大爷-e2u 5 жыл бұрын
主要是你不识字
@neverh2503
@neverh2503 5 жыл бұрын
@@你大爷-e2u 你读过比如数学类的专业书吗?这跟识不识字真没太大关系。。。
@鸟人漫画
@鸟人漫画 5 жыл бұрын
老师,真的很佩服你!感觉你什么都懂!
@junweiye3370
@junweiye3370 6 жыл бұрын
不知道是不是这样解释比较好,但赌徒心理是这个问题的例外。我觉得边际成本递增会比较好地解释这个问题。
@히로시마-c5r
@히로시마-c5r 5 жыл бұрын
我也是小盆友 小盆友。。。如今小盆友在永乐世界里绝对是身份的象征!
@neoweechang8256
@neoweechang8256 6 жыл бұрын
老師最厲害的就是把理論在生活中的運用舉例出來,狠毒哦老是其實衹會教,生活中的運用可能要靠自己去思考/摸索,看老師的視頻真好。
@jackson9623
@jackson9623 6 жыл бұрын
講得沒錯,但錯字也太多了吧XD
@jwn513
@jwn513 6 жыл бұрын
哇,受益匪浅呀,李老师是不是已经是投资专家了
@mastershark
@mastershark 6 жыл бұрын
时间是投资中最重要的因素之一... Interest rates, duration of the investment, time spend to obtain the money, time decay, along with inflation, risk, and current market conditions and expectation.
@jimhazumu9265
@jimhazumu9265 6 жыл бұрын
我觉得这个小朋友一直在成长。
@felixyao2183
@felixyao2183 6 жыл бұрын
李永乐老师,可不可以讲解一下蒙特卡罗方法,以及它的一些应用。
@TchLiyongle
@TchLiyongle 6 жыл бұрын
已经讲了,前两天《输了就加倍下注...》的那个视频!
@edmondlau8400
@edmondlau8400 6 жыл бұрын
我要抬个杠,当解释圣披得堡悖论时计算出了问题,因为你是一直扔直到你抛出反面,反面的概率应该也要算进去,所以每个项要乘多一个1/2,虽然最后也是无穷大。。
@icarus1112
@icarus1112 6 жыл бұрын
...你再好好看看
@huaidongxiong6131
@huaidongxiong6131 6 жыл бұрын
李永乐老师通过做科普满意度得到了极大提升 ^_^
@谢明翰
@谢明翰 4 жыл бұрын
有谁是看一次就搞懂了的。。。 有多少人和我一样,看了有倒退回去再看多一次的
@thomaslee6498
@thomaslee6498 4 жыл бұрын
別給自己太大的壓力! 對自己喜歡了解的知識,倒退回去多看幾次都值. 當然看越多次融會貫通的概率會愈高,但相對的期望效用會愈少
@cidc1491
@cidc1491 3 жыл бұрын
其實我是跳著看完的,只要之前有學過邊際效用遞減大概就知道老師要講什麼了
@JunYiLeeJohnTeeeLee
@JunYiLeeJohnTeeeLee 6 жыл бұрын
數學就是萬物的規律的抽象化
@minxue8098
@minxue8098 4 жыл бұрын
现在数学水平连小学生也不如了…看的有跟不上思路的地方,但是老师讲得有意思
@hillhopeman2405
@hillhopeman2405 6 жыл бұрын
关于比尔盖茨会不会捡1万块的问题,我觉得可以这么解。一万人民币大约是1500美金,比尔盖茨的资产大约是500亿美元,我们拿1500除以500亿可以得出这1500美金相对于他的全部资产的比重,这个数字是0.00000003,亿分之3。假设我的资产是100万人民币,拿100万乘以0.00000003等于0.03。也就是说1万块在比尔盖茨的眼里大约相当于我眼里的3分钱,那么你说比尔盖茨会不会捡呢?当然有可能他还是会捡🤪……苍天啊,大地啊,保佑我上面这些没有算错,我已经使出洪荒之力了😅
@codycai2983
@codycai2983 6 жыл бұрын
Hill Hopeman 因为你量化得有问题😂 他的资产跟他捡钱没有线性关系 经济学来讲只要你捡了钱就是赚了 没有任何损失 为什么不捡呢😂 何况他要是比尔盖茨 对钱那么敏感
@arthurhuang6160
@arthurhuang6160 6 жыл бұрын
很多有錢人很節省,那不是花不起,是天性使然,是對生活的態度,跟錢無關。
@XLuo-ro4jn
@XLuo-ro4jn 5 жыл бұрын
这个问题我记得比尔盖茨亲自回答过,当然是要捡啊
@文财神
@文财神 5 жыл бұрын
资产不等于现金
@alvinglt6821
@alvinglt6821 5 жыл бұрын
捡别人失落的钱是可耻的,这是我一直以来所受到的教育。
@xijjd63
@xijjd63 5 жыл бұрын
现在的小朋友不简单,我就是未来的大老板和总统
@CK-fr6ow
@CK-fr6ow 6 жыл бұрын
视频里两个题目(悖论)引用的数据是相同的,所以当中的概率相同,然而第一个悖论里的数据是错误的,也同样会影响到第二个悖论的证明 第一个数值是:一次2元,二次4元,三次8元;实际上第一次是2元,二次3元,三次4元,那么最后的期望值就不会是无限大 同样第二题的Xi就变成2元3元和4元对应的Pi是1/2 ,1/4,1/8,那么最终结果也会不同
@林润-c3q
@林润-c3q 5 жыл бұрын
我一直在找和我同样想法的人,看来现在有了
@yaoqinlu6467
@yaoqinlu6467 5 жыл бұрын
两个题没有联系,第二个游戏的规则就是一直投硬币直到投到反面,拿的钱是2的n次方倍,n是投的次数。
@leizhang4044
@leizhang4044 3 жыл бұрын
听了半天,是投还是不投,李老师太逗了
@zhaoliu7166
@zhaoliu7166 10 ай бұрын
老师讲的太好了!
@jiackmin9553
@jiackmin9553 6 жыл бұрын
李老师真的是万能的
@zerxuszhang8846
@zerxuszhang8846 6 жыл бұрын
我觉得这是一个性价比的问题,理论上来的说表示获益的函数f(x)是一个增函数,但是斜率变化越来越小,当n非常大的时候,需要增加加下一个2^n才能多1元的期望值,所以从投资的角度来说,应该对斜率变化设一个下限,低于下限则表示期望值的增加幅度太低,性价比太低
@YY-fy3pj
@YY-fy3pj 4 жыл бұрын
圣彼得堡那个感觉不应该是悖论,那个规则实质是不管你每次投入多少钱玩,结果都是小概率赢大钱,大概率亏小钱。玩无数次的话,就是期望值的结果,即赚大钱。但前提是你玩这个游戏的本金要足够大。这其实也就是股票趋势交易战法的本质。
@chinkanglee8495
@chinkanglee8495 6 жыл бұрын
喜欢这种学术视频,已关注。。。
@Infinix_note30pro
@Infinix_note30pro 4 жыл бұрын
最好就是买了十年后再回来看,你肯定满意度会很高
@gaojiemu7826
@gaojiemu7826 6 жыл бұрын
不看字幕 伯努利一家很容易听成 不努力。尼古拉 不努力。 丹尼尔 不努力。他们全家都是不努力的科学家。 人家不努力都有这成就,我还努力个屁啊😂
@rai1331
@rai1331 5 жыл бұрын
因為不努力對於滿意度的提升比努力來得高? ((溜
@LJHuang-jn8bj
@LJHuang-jn8bj 5 жыл бұрын
[不努力]頂多零成本。。。我們若譯成[白努力]昰付出很多成本而無回收,很慘。
@hyuklee2007
@hyuklee2007 5 жыл бұрын
gaojie mu 我也听成那个不努力(⁎⁍̴̛ᴗ⁍̴̛⁎)人家不努力都这么牛。。。
@PptyS209
@PptyS209 3 жыл бұрын
🤣🤣🤣
@hexiaoqiu
@hexiaoqiu 6 жыл бұрын
听君一席话,胜读十年书
@倀鬼
@倀鬼 6 жыл бұрын
😀
@韬黎
@韬黎 4 жыл бұрын
Xiaoqiu HE 老梁讲过,听君一席话胜读十年书是互为因果的,你不读那十年书是听不懂这一席话的。
@xuebinwang4134
@xuebinwang4134 3 жыл бұрын
@@韬黎 话很应景,正在边际效用递减,开始的十年书肯定比话强,N年后的十年书才会败给一席话
@-hermit3401
@-hermit3401 3 жыл бұрын
听君一席话,多打十年工。
@迪刘-z4r
@迪刘-z4r 3 жыл бұрын
李老师讲的挺好的 就是每次的结束语感觉上厕所憋不住了
@OldWooing
@OldWooing 6 жыл бұрын
【不同观点】 圣彼得堡悖论里提到的游戏。其实没有悖论,期望回报是无穷大。这个其实没有问题。 为了说明这一点,我们换一个简单的问题。假设有一个假想的彩票公司,发行100万张彩票, 每张售价1元钱,只有一张彩票有奖金,奖金是1亿元。那么每张彩票的数学期望是100元。显然是应该买入的。 如果你的全部财产只有1000元,而且不能融资,你是否愿意买彩票?如果买了,有千分之一的机会获得1亿元, 千分之九百九十九变成穷光蛋。 结论就是玩圣彼得堡悖论里的游戏时应该投入多少钱这个问题,不仅依赖于期望回报,还依赖于你所能调动的资本总量。 如果起始资本也是无限大的话,那么这个游戏的投入只要是一个有限的已知数就可以玩。一直玩下去稳赚不赔。 如果起始资本是有限大的已知数M,而每玩一次的投入是已知数N,那么通过M和N 应该可以计算出途中输光的概率。
@Nick-mq6fe
@Nick-mq6fe 6 жыл бұрын
我有一点不明白,您举的例子买100万必得一亿,似乎世界上没有哪个彩票这样骚操作吧?既然假想不合理,那继续推论有何意义?
@OldWooing
@OldWooing 6 жыл бұрын
@@Nick-mq6fe 研究数学问题而已。世界上也不会真的有人让你玩圣彼得堡悖论的游戏。但是却可以拿它来推理。有个名词叫做“思想实验”。不要太认真。
@gobot3414
@gobot3414 6 жыл бұрын
同意你但观点,不过上述假设,最佳的处理方案是在开奖前以低于100元的价格卖给有钱人
@OldWooing
@OldWooing 6 жыл бұрын
@@gobot3414 不带这么玩的。不然的话,圣彼得堡悖论里的游戏也可以打包成金融衍生产品拿来出售。尼古拉伯努利和牛顿也会从棺材里爬出来买。
@lifeisfun2664
@lifeisfun2664 6 жыл бұрын
OldWooing 一百万张彩票,每张1块钱,也就是发行方总收益100万。赢了给1亿。。。对,所以在发行方脑残的前提下把100万张彩票全部买下来,花100万稳赚1亿。结论是,当发行方智商小于10,本金一周内翻100倍的可能是100%。
@KKL-i2l
@KKL-i2l 6 жыл бұрын
李永乐老师,你可否来一讲关于有限元方法的历史的课,因为这个方法很有用,而且困惑很多人
@wenweiyan9664
@wenweiyan9664 4 жыл бұрын
总结一下,这里能够把原来期望成本的无穷大变成效用成本的4元,一下子这个游戏的收益成本(是否值得投资的考虑因素)被压缩了这么多,决定因素是选取了log2N作为效用函数。这一点李老师说得没错,但是说效用函数选一个快速递减的函数是因为有钱多的人不稀罕有更多的钱就不对了。开始玩游戏的时候人设没有说是有钱人在玩啊。其实我觉得使用效用来压缩这游戏收益成本是不对的,这游戏如果很多人玩,而且假设有一台自动投注且速度无线快的机器,任何人马上可以拿到投出反面才停止(不管经过多少轮,直到投出反面)的结局,这样投注是不是有无穷大收益成本,意味着多贵都要玩呢?但实际上也不会有人觉得它的收益是无穷大,这不是要付出时间成本,这仅仅是风险太大,小概率的大成功被正常地忽略了。这就和乐透彩票一样嘛,还是很多人不玩的。这和有很多钱的时候效用递减有关系吗?
@harrysong8938
@harrysong8938 Жыл бұрын
感觉美国Powerball这么流行很大一部分原因是因为它有点像可以临时入坑的圣彼得堡游戏,前期没人中,奖励池就积累。当奖励金靠近一个天文数字时人群会因为买入彩票的期望效用大于这2美金彩票零售额而疯狂买入造成这天文数字奖池在没人赢的情况下继续狂涨。博彩真是把人类对金钱的疯狂给最大化了。
@xiaohuizhao5068
@xiaohuizhao5068 4 жыл бұрын
如果小时候用李老师的方法而不是硬式教育 也许我们会多不少有用之才 并且我们知道自己快乐着 哈哈哈
@alextse6810
@alextse6810 6 жыл бұрын
视频禁止搬运 有字幕
@Rex777able
@Rex777able 6 жыл бұрын
宽油
@thema655
@thema655 6 жыл бұрын
数学和哲学一样,都是和生活有关的。目的是人脑尝试着去理解这个世界的运行规律。
@LightChu2.7183
@LightChu2.7183 5 жыл бұрын
幫老師澄清一下,3:42的聖彼得堡悖論規則是指,假設當你玩到兩次才出現反面給4塊,三次才出現反給8塊,跟上面的期望值沒有關係·。
@naiyozhao5327
@naiyozhao5327 5 жыл бұрын
Light Chu 原来如此 我从哪里开始全程懵逼 还以为他讲错了呢
@xiangruling3380
@xiangruling3380 5 жыл бұрын
第一次看理解了 第二次看才发现这里讲错了 李老师的视频不能娱乐性得看 要认真
@lucasl3166
@lucasl3166 5 жыл бұрын
-现在小朋友越来越厉害了-
@顾飘飘
@顾飘飘 5 жыл бұрын
季艺 哈哈😄
@ashery3781
@ashery3781 5 жыл бұрын
生活中的满意度效用实在是不好测量 而且投资结果也不会这么简单粗暴 所以人们对于这个的评估一般都是 凭感觉 哈哈哈哈
@williamong4953
@williamong4953 6 жыл бұрын
看李老师一视频,胜过读万卷书。 李老师,请问一个人如不满意现状,人该如何鼓励自己,或甚至自我催眠,来改善现状呢?望老师不吝赐教。
@ko123qweqko7
@ko123qweqko7 2 жыл бұрын
李老师你好,我看了你这期视频,就有个地方想不明白,我数学和经济不太好,就彼得悖论那里,你能解释一下为什么投两次和3次硬币的收益是4和8元吗? 我的想法是: 第1次= 2 (1次就中) 第2次= 1+2=3 (第1次正面=1 +第2次反面=2 = 3) 第3次= 1+1+2=4 (2次正面=(1+1) +第2次反面=2 = 4) 我知道这答案跟你的答案不同,但我不知道你是怎么算出4和8。。。求指教 (也求其他前辈指教) 感谢
@worshiptogetherwt
@worshiptogetherwt 4 жыл бұрын
李老师,很好奇现在的伯努利后人在做什么,感觉很了不起的家族
@kisscity
@kisscity 6 жыл бұрын
這集很精彩 希望多講點類似的~
@叶无趣-n1c
@叶无趣-n1c 5 жыл бұрын
为了支持我把广告多看了十几遍。
Кто круче, как думаешь?
00:44
МЯТНАЯ ФАНТА
Рет қаралды 6 МЛН
賭場的特別服務 | 老高與小茉 Mr & Mrs Gao
38:00
老高與小茉 Mr & Mrs Gao
Рет қаралды 3,4 МЛН
高智商问题:100名囚犯如何用数学拯救自己?
24:40
李永乐老师
Рет қаралды 420 М.
一口气了解洗钱 它能玩得有多花
33:34
小Lin说
Рет қаралды 2,4 МЛН
What's Kelly formula? Can we be another Buffett by using this formula?
11:33
李永乐老师
Рет қаралды 1,4 МЛН
一口气了解通货膨胀 | 硬核
26:13
小Lin说
Рет қаралды 2,4 МЛН