Teaching R to New Users: From tapply to Tidyverse

  Рет қаралды 12,401

R Consortium

R Consortium

Күн бұрын

Пікірлер: 9
@americanexile
@americanexile 5 жыл бұрын
Outstanding blog post which led me here. Particularly valued your code example comparing "old school" and the Tidyverse on the same task, and the following analysis of each.
@AranRyan
@AranRyan 6 жыл бұрын
Great talk. It improved my awareness and understanding of R as a organic, developing system. Thanks!
@JakeTolbert
@JakeTolbert 5 жыл бұрын
Wickedly elegant answer about why R seems like a sloppy mess sometimes around 49:00 or so - Roger Peng in the best.
@Standaardnaam
@Standaardnaam 6 жыл бұрын
I was promised some tapply, but all we got was aggregate.
@nkristianschmidt
@nkristianschmidt 4 жыл бұрын
22:50 where one realizes, TidyVerse will take away your freedom but also give you some tools to easily create some standard solutions.
@martinbel
@martinbel 5 жыл бұрын
It's a pity data.table is left out of this talk. It sorted out many of the problems mentioned and in a way has a deep relation to the "tidyverse", considering melt, dcast functions originally from reshape2 are in there.
@nkristianschmidt
@nkristianschmidt 4 жыл бұрын
data.table was one of the biggest advances R ever saw. TidyVerse is a new language and they push it a lot and try to ignore the rest or take it over as theirs.
@nkristianschmidt
@nkristianschmidt 4 жыл бұрын
learn Base-R first. Do not engage with TidyVerse until you absolutely have to. Otherwise, you will unable to document and debug your code. Then add data.table and packages that are relateable to base-R. And, though caret is fantastic, it is likely better to use the closer-to-base packages first and then learn caret. Otherwise you know too little about what is going on under the hood.
@siqizhang3602
@siqizhang3602 5 жыл бұрын
Even from the very beginning, R has been only superficially similar to S, just as Julia is superficially similar to MATLAB.
Code smells and feels
55:04
R Consortium
Рет қаралды 15 М.
David Robinson - Ten Tremendous Tricks in the Tidyverse
20:41
Lander Analytics
Рет қаралды 29 М.
What type of pedestrian are you?😄 #tiktok #elsarca
00:28
Elsa Arca
Рет қаралды 17 МЛН
How Much Tape To Stop A Lamborghini?
00:15
MrBeast
Рет қаралды 194 МЛН
Which team will win? Team Joy or Team Gumball?! 🤔
00:29
BigSchool
Рет қаралды 15 МЛН
1, 2, 3, 4, 5, 6, 7, 8, 9 🙈⚽️
00:46
Celine Dept
Рет қаралды 99 МЛН
Hadley Wickham: Managing many models with R
1:09:38
Psychology at the University of Edinburgh
Рет қаралды 69 М.
Statistical Inference: A Tidy Approach using R
17:17
R Consortium
Рет қаралды 4,6 М.
Emily Robinson - The Lesser Known Stars of the Tidyverse
18:04
Lander Analytics
Рет қаралды 20 М.
[DSC 4.0] What Makes a Good Function - Hadley Wickham keynote
46:52
Data Science Conference
Рет қаралды 14 М.
Get started with tidymodels using vaccination rate data
25:46
Julia Silge
Рет қаралды 12 М.
Tidyverse in R - tips & tricks
18:10
Tom Henry - data science with R
Рет қаралды 27 М.
Creator of git, Linus Torvalds Presents the Fundamentals of git
1:10:15
Developers Alliance
Рет қаралды 141 М.
Causal Inference in R
2:49:25
R Consortium
Рет қаралды 1,5 М.
Wrangling data in the Tidyverse - Part 1
1:16:10
R Consortium
Рет қаралды 9 М.
What type of pedestrian are you?😄 #tiktok #elsarca
00:28
Elsa Arca
Рет қаралды 17 МЛН