⏱️ Chapter Timestamps ==================== 0:00 - Intro 1:06 - Agenda 1:38 - What is CAP Theorem? 2:27 - Partition Tolerance 3:47 - Consistency 4:14 - CAP Availability 5:55 - Consistency & Availability 9:04 - Consistency & Partition Tolerance 12:15 - Availability & Partition Tolerance 14:35 - Beyond CAP Theorem
@sushil19222 жыл бұрын
One confusion, When I want to achieve CA , then why there is a partition , i read and write from the master, thus i achieve CA, but we are also achieving the Partition tolerance with it, isn't it ? coz even after partition, our system is able to still serve.
@RipunjayTripathi-CNT3 жыл бұрын
There is slight ambiguity in explaining Partition and Partition Tolerance - Partition Tolerance is the 'ability' of the system to be able to serve writes OR queries even when there is network partition (i.e. when messages get dropped or arbitrarily delayed). If the system is partition-tolerant, it may not remain consistent for that period, however the tolerance property causes it to sync the newer writes when network becomes healthy again.
@gugolplex2 жыл бұрын
Yes!! A CP database is always consistent even in partition scenarios (connection loss between nodes), but you lose availability during this partition. A AP database is always available even in partition scenarios, but you lose consistency during the partition. Finally, a CA database is available and consistent only if no partition occurs. If some network problem occurs between nodes, the database might lose either its consistency or availability. So it isn't partition tolerant.
@living_curious Жыл бұрын
Then what about a CP system? will the data store remain unavailable altogether in case of a network partition (network break or loss of connection within the data store)?
@AmandeepSingh-mo4eo Жыл бұрын
Yes correct
@saikarthik89534 жыл бұрын
Telling us the agenda before entire video..hatsoff for that..you are true tech enthusiast rather than a youtuber
@TechPrimers4 жыл бұрын
Thank you Sai. Yes. Time is money. I would like to give back ppl their time if they are not interested. Appreciate your time 👍🏻
@jibin72773 жыл бұрын
so glad I watched this video in my lifetime
@KhoaNguyen-mv2mu4 жыл бұрын
Thank you so much @Tech Primers, your channel is resourceful. I've learnt a lot about Spring and Java. I really appreciate your works!
@TechPrimers4 жыл бұрын
Thanls Khoa
@vaishalibisht5183 жыл бұрын
thanks for such a comprehensive video on cap theorem.
@vishalpathak82664 жыл бұрын
a very decent explanation of CAP theorem
@raveendrareddy89004 жыл бұрын
Again new and good stuff helpfull. Thanks bro
@rakeshranjan697510 ай бұрын
Amazingly explained
@preetisagarnayak15152 жыл бұрын
easy explanation , thanks!
@a143r Жыл бұрын
excellent explanation
@RaghavendraBoralli4 жыл бұрын
Excellent video..keep posting such videos. Thank you
@pguti7784 жыл бұрын
Very good!!! Please continue with this series!!
@ana22331. Жыл бұрын
Excellent
@adhipgupta7108 Жыл бұрын
The explanation for the Relational DBs supporting CA is bit confusing. The reason why Relational DBs are Consistent is because the Primary node is the one which clients read and writes to. So every time any client reads the response will be consistent. Availability in Relational DBs is from replicating data from the primary to backup nodes, so in case the primary node goes down, the secondary node is available to respond to requests. However, it isn't partition tolerant because if the network breaks between the primary and secondary it wouldn't be able to replicate data.
@skillfullSwaroop4 жыл бұрын
Thanks for sharing your knowledge
@ngneerin2 жыл бұрын
Best explanation of CAP theorem i have come across
@aneksingh44964 жыл бұрын
Very nicely explained ... Please post some videos like Facebook news feed design
@shaswatdasgupta37764 жыл бұрын
Solid information Ajay. Thanks for this!
@TechPrimers4 жыл бұрын
Thanks shaswant. Glad it’s helpful
@puneet7394 жыл бұрын
Good work buddy. u help us in day today activities and understanding the technical aspects
@TechPrimers4 жыл бұрын
Glad its helpful puneet.
@sushil19222 жыл бұрын
@@TechPrimers One confusion, When I want to achieve CA , then why there is a partition , i read and write from the master, thus i achieve CA, but we are also achieving the Partition tolerance with it, isn't it ? coz even after partition, our system is able to still serve.
@biniluwyz49812 жыл бұрын
ur great bro keep it up
@aditigupta68707 ай бұрын
what do you mean by mysql through the same function? Can you please clarify this ? at 0:18
@TheEntium4 жыл бұрын
Next level explanation!
@suhasmusick2 жыл бұрын
amazing video!
@TechPrimers2 жыл бұрын
Glad you like it!
@parthibandhanasekaran63994 жыл бұрын
Very nice video to understand the CAP theory.
@parthibandhanasekaran63994 жыл бұрын
Do you have any sample code for dynamic rule engine concepts
@TechPrimers4 жыл бұрын
Check my rule engine video
@jibin72773 жыл бұрын
Is it safe to assume that all DBs in production are currently distributed? Because CAP applies only to distributed DB situation right?
@vipsclassicalboy2 жыл бұрын
awesome ...
@Van_Verder2 жыл бұрын
Very Helpful, thx!
@codegeek82564 жыл бұрын
Can you please share how you make your youtube videos please, the process, editing, and the graphix and transitions etc. please
@ChandraShekhar-by3cd3 жыл бұрын
Nice Explanation pls upload more video on system desing.
@manikantamaddipati10904 жыл бұрын
Great work man, Thanks :)
@bindupriya17812 жыл бұрын
while explaining SQL database why you don't use same cluster example used for the other DB's.
@kunalsharma-zc2ho4 жыл бұрын
Sir, please continue system design challenges.
@dkumarrswamy3 жыл бұрын
Good one
@adirockerenator3 жыл бұрын
thanks for such an amazing breakdown
@TechPrimers3 жыл бұрын
Glad you liked it!
@sushil19222 жыл бұрын
@@TechPrimers One confusion, When I want to achieve CA , then why there is a partition , i read and write from the master, thus i achieve CA, but we are also achieving the Partition tolerance with it, isn't it ? coz even after partition, our system is able to still serve.
@JaNaMSoNi4 жыл бұрын
Please make practical video on 2 Database synchronisation like if we have POS System 1 db for particular system it'll sync with main server.
@janvichitroda46893 жыл бұрын
Wow! Thank you for giving such detailed explanation. I guess I don't need any other video for explanation of CAP Theorem 😀
@sushil19222 жыл бұрын
@Janvi One confusion, When I want to achieve CA , then why there is a partition , i read and write from the master, thus i achieve CA, but we are also achieving the Partition tolerance with it, isn't it ? coz even after partition, our system is able to still serve.
@vamsikrishna-iv4oj4 жыл бұрын
May I know.. Why to sacrifice one of the feature among three? Why can't possible to cover with 3 features in any dB? Can you explain..
@TechPrimers4 жыл бұрын
You see the video it’s already explained. If there is partition tolerance, you either get consistency or availability. Since data is isolated and there is now way to sync new data. This is similar to how you get disconnected from internet and not able to view any new updates
@techiethoughts57294 жыл бұрын
@@TechPrimers I understood that we are loosing either Availability or Consistency when there’s a partition tolerance, but what are we sacrificing in case of relational databases (Which are always available and consistent) as per CAP theorem. Can you please elaborate?
@sushil19222 жыл бұрын
One confusion, When I want to achieve CA , then why there is a partition , i read and write from the master, thus i achieve CA, but we are also achieving the Partition tolerance with it, isn't it ? coz even after partition, our system is able to still serve.
@JavaLovers4 жыл бұрын
Nice one I love the slides, hope you must have used Google slides..!!
@java37114 жыл бұрын
Thanks for such a nice videos.. pls do more videos on system design and microservice design pattern... only understanding is sufficient no coding required
@jibin72773 жыл бұрын
You are doing a good job :)
@a123a284 жыл бұрын
Just Awesome
@arunkrish83994 жыл бұрын
Guru can you make a tutorial on Kafka connector, streaming data from one database to another.
@Vishwasp134 жыл бұрын
Good to see we are getting away with the Master Slave terminology and using Primary Secondary instead.
@TechPrimers4 жыл бұрын
Yes in deed... #DiversityAndInclusion
@madanmohanpachouly61352 жыл бұрын
Thanks
@harshith_takkala3 жыл бұрын
Thanksss
@车少2 жыл бұрын
You didn't talk about when P happend, the followers will elect a new leader and there are two leaders in the different subset of network provide read and write.
@vageeshadiga52184 жыл бұрын
Nice video
@namjitharavind4 жыл бұрын
Google cloud firestore following CP however they can provide more availablity because they are using their own private network. Is it right?
@TechPrimers4 жыл бұрын
General availability is different from CAP Availability Namjith. If there is a partition (failure between nodes in the firestore cluster), you have to choose between consistency or availability, you cannot get both. However beyond CAP theorem you can include Latency as one more parameter, you can choose Latency over Consistency
@sergeykholkhunov18883 жыл бұрын
Thank you, this video is usefull)
@rjrobinjames4 жыл бұрын
Excellent video :-) You made it damn easy!!! Can you make something on a typical centralized application logging framework?
@TechPrimers4 жыл бұрын
There is a splunk video robin. You can take a look at that
@AliceZhu-z9h9 ай бұрын
The CA part is very misleading. If we choose consistency and availability over partition tolerance, then there must NOT have any network partitions happening.
@kharthigeyan4 жыл бұрын
Thank you :-)
@lakhandeswal27324 жыл бұрын
You made it too easy to understand.
@TechPrimers4 жыл бұрын
Glad it’s helpful
@rathnakumar7314 жыл бұрын
Mass bro
@jeyaprakash55194 жыл бұрын
If possible share your thoughts on modelling time Series(ex: Call Details of user) data using Cassandra / any Nosql DB.
@TechPrimers4 жыл бұрын
I did a video on Prometheus i believe. Try checking that, if that doesn't help let me know, i will do one
@gyanasahu10064 жыл бұрын
CAP theorem as per it's original defn, only speaks about distributed db. Here Availability is not "some data" but should be "all data". Some parts were wrongly explained. Please read up google wiki page.
@TechPrimers4 жыл бұрын
Hi Gyana Sagu, Not sure if you have read CAP Availability. I had mentioned availability mentioned here is different from CAP Availability. If you look at the CAP theorem wiki it says "Availability: Every request receives a (non-error) response, without the guarantee that it contains the most recent write" To my understanding, if the most recent write is not synced, that's not all data. Can you justify your comment?